Оригинал материала: https://3dnews.kz/948466

Обзор процессора AMD Ryzen 7 1800X: неужели дождались?!

Внешний вид. Технические характеристики

Сегодня именно тот случай, когда во вводной части статьи можно было бы написать тысячи слов. Ещё бы, ведь выходит Ryzen – самый многообещающий за последние пять лет x86-процессор, который к тому же имеет огромное значение для того, по какому пути индустрия персональных компьютеров пойдёт в ближайшей перспективе. Однако вы наверняка ждёте от нас не пространных рассуждений на тему того, насколько ожидаем новый продукт и как было бы хорошо, если бы на рынок процессоров вернулась полноценная конкуренция. Поэтому мы не будем откладывать самое интересное на потом, а сразу перейдём к техническим деталям, а потом и к тестам.

#Ryzen: новое начало

Ryzen для AMD фактически означает полную перезагрузку на процессорном рынке. После того как стало понятно, что Bulldozer и его производные не отвечают современным реалиям, компания решила сделать принципиально новый процессорный дизайн, в котором бы использовались современные полупроводниковые технологии (читай: FinFET), кардинальным образом была бы увеличена производительность (речь идёт о более чем полуторакратном приросте), а также на новый уровень была бы выведена энергоэффективность. Всё это вместе и сведено в микроархитектуре Zen, которая должна стать основой всего семейства процессорных продуктов AMD в ближайшее время: для ноутбуков, десктопов и серверов.

В последние шесть лет AMD на процессорном рынке терпела сплошные неудачи. С ядрами семейства Bulldozer компания застряла в мире 32- и 28-нм чипов на планарных транзисторах, в то время как Intel раз за разом проводила архитектурные улучшения, переходила на трёхмерные транзисторы, а также внедряла производственные процессы с 22- и 14-нм нормами. Тем не менее багаж, с которым AMD подошла к текущему моменту, всё-таки устарел далеко не полностью. У компании остались вполне конкурентоспособные технологии энергопотребления, хорошее и современное интегрированное графическое ядро и отвечающие потребностям пользователей мультимедийные блоки. Не хватало только производительного и энергоэффективного x86-ядра, которое позволило бы вместе со всеми своими смежными наработками вылезти из ультрабюджетного болота.

Zen – это именно такое ядро. Оно принципиально отличается от всего того, что у AMD было до этого. Для помощи в его создании AMD приглашала ведущего процессорного архитектора Джима Келлера, перед которым была поставлена задача разработать ядро с классической «широкой» микроархитектурой, которое по параметрам потребления и производительности смогло бы стать основой процессоров для всего спектра компьютеров, начиная с безвентиляторных ноутбуков и заканчивая высокопроизводительными рабочими станциями и серверами. В итоге сегодня AMD представляет на суд публики яркое исключение в «эре 5-процентных улучшений» – новые процессоры компании должны обеспечить кардинально более высокий прирост производительности.

И тому есть вполне объективные предпосылки. Ядра Zen больше не разделяют друг с другом никаких ресурсов, как это было в Bulldozer, они полностью самостоятельны и к тому же поддерживают технологию SMT, позволяющую исполнять два потока на одном ядре одновременно (аналог Hyper-Threading). Кроме того, каждое ядро получило существенно снижающий накладные расходы по декодированию инструкций собственный кеш микроопераций, полностью переделанный быстрый кеш первого уровня с обратной записью и низким энергопотреблением, собственный для каждого ядра блок FPU и выделенный L2-кеш, а также массу иных оптимизаций. Базовый целочисленный конвейер Zen получил длину в 19 стадий, что сопоставимо с конвейером современных процессоров Intel (у Skylake и Kaby Lake – 14-19 стадий). А кроме того, производство чипов, собранных из ядер Zen, теперь будет происходить по 14-нм техпроцессу с FinFET-транзисторами, что лишь одно способно примерно на 30 процентов понизить потребление.

До сегодняшнего момента процессоры AMD базировались на ядрах Piledriver, Steamroller и Excavator, но теперь флагманские продукты компании переходят на новую основу. С 2 марта AMD начинает продвигать платформу Socket AM4 и продавать восьмиядерные процессоры Ryzen с микроархитектурой Zen, которые предназначаются для высокопроизводительных десктопных систем. Затем, в течение второго квартала, семейство Ryzen пополнится процессорами с шестью вычислительными ядрами, а во второй половине года в нём появятся и четырёхъядерные представители. Таким образом, к концу 2017 года у AMD в арсенале будет полный набор обновлённых процессоров для настольных ПК. Впрочем, при этом компания пока не планирует сворачивать продажи процессоров с более старыми архитектурами, которые должны будут поддержать линейку Ryzen в ультрабюджетном сегменте.

Представители AMD, рассказывающие о преимуществах Zen, не скупятся на эпитеты. Например, Лиза Су, исполнительный директор компании, говорит, что Ryzen – это наиболее конкурентоспособный CPU за последние десять лет. По словам же технического директора AMD Марка Пэйпермастера, ядра Zen делают ни много ни мало квантовый скачок в скорости исполнения инструкций, и в особенности в части однопоточной производительности. Звучит впечатляюще? Давайте посмотрим подробнее, какими же выдающимися усовершенствованиями может похвастать микроархитектура Zen.

#Микроархитектура Zen

Одно из главных концептуальных изменений в Zen – это поддержка многопоточности и расчленение ядер. Прошлая микроархитектура, Bulldozer, предполагала разделение частей конвейера, FPU и SIMD-блоков, а также L2-кеша между сблокированными в модули парами ядер. Теперь же все эти ресурсы стали для каждого ядра полностью индивидуальны.

Однако одним лишь этим дело далеко не ограничивается. Если посмотреть на блок-диаграмму Zen, то первым, что бросится в глаза, окажется кеш микроопераций, появившийся в процессорах AMD впервые. Intel ввела подобный функциональный блок ещё в Sandy Bridge, и тогда он смог доказать свою высокую востребованность тем, что нагрузка на входные стадии исполнительного конвейера заметно снизилась. Положительный опыт надо перенимать, поэтому теперь кеш микроопераций есть и в Zen: в него помещаются результаты декодирования x86-инструкций, что позволяет снять нагрузку с декодера, а значит повысить производительность и снизить потребление при выполнении повторяющихся участков кода.

Кеш микроопераций работает в Zen в связке с механизмом предсказания переходов. Дело в том, что в новой архитектуре AMD отвязала предсказание переходов от выборки инструкций, и это значит, что реализованные в нём алгоритмы могут заполнять очередь на исполнение исключительно основываясь на собственных алгоритмах. Для того чтобы такая схема была жизнеспособна, при предсказании переходов стали использоваться буфера существенно большего размера. Кроме того, для условных переходов в Zen используется самообучающаяся система на основе перцептронов и двухуровневого буфера целей ветвлений.

Эта схема позаимствована из процессоров Jaguar, но в Zen она несколько усовершенствована и более тщательно перенастроена. Для динамических непрямых переходов используется отдельный массив адресов. Все буфера при предсказании переходов делятся между потоками, при этом обращения к ним получают разный приоритет в зависимости от состояния каждого потока. Ещё одно важное изменение касается перемещения буферов трансляции адресов (ITLB) в блок предсказания переходов. Это увеличивает агрессивность предварительной выборки и положительно сказывается как на скорости предсказания, так и на задержках для восстановления конвейера после неправильно взятых ветвлений кода.

Буфер трансляции адресов (ITLB) разделён в Zen не на два, а на три уровня. Добавлен дополнительный нулевой уровень, который может хранить до 8 записей для страниц любого размера. L1 TLB при этом рассчитан на 64 записи для страниц любого размера, а L2 TLB хранит 512 записей для 4- и 256-килобайтных страниц. Адреса гигабайтных страниц в L2 TLB не обслуживаются.

Блок декодирования инструкций в Zen, который преобразует поступающий поток x86-команд в микрооперации, способен обрабатывать напрямую до четырёх инструкций одновременно. Однако с учётом того, что некоторые инструкции могут быть взяты из кеша микроопераций, общий объём которого составляет 2048 микрокоманд, на выходе у декодера может оказываться до шести целочисленных микроопераций и до четырёх операций с плавающей точкой каждый такт.

В дальнейшем конвейеры, относящиеся к целочисленной и вещественночисленной частям ядра, полностью разделены. У каждой части ядра не только свои собственные исполнительные блоки, но и свои собственные планировщики. В теории это и делает Zen «широким» ядром, способным обрабатывать сразу большое число параллельных инструкций. Сама AMD характеризует возросшие по сравнению с Bulldozer исполнительные ресурсы двумя коэффициентами: объём окна планировщика увеличился на 75 процентов, а в целом планировщики могут отправлять на исполнение в полтора раза больше инструкций, чем это было в ядрах Excavator. И это значит, что в теоретическом плане Zen может обеспечивать примерно такой же темп исполнения инструкций, как и последние интеловские процессоры. Правда, Intel тоже не стоит на месте, и декодер в Skylake и Kaby Lake стал способен декодировать не четыре, а пять x86-инструкций за такт.

Что касается целочисленной части исполнительного конвейера Zen, то она в общей сложности способна обработать все шесть поставленных микроопераций за такт. Для этого в микроархитектуре заложено четыре арифметико-логических устройства (ALU) и два устройства генерации адресов (AGU). Каждое из этих исполнительных устройств имеет собственный планировщик с 14-позиционной очередью, плюс все они вместе работают с единым физическим регистровым файлом на 168 записей. Целочисленные устройства не совсем равноправны, и их назначение несколько различается в деталях. Ветвления могут исполняться только на одной паре ALU, а операции умножения и деления – на другой паре, причём каждая из этих операций подходит только для определённого устройства. В целочисленной части сделаны и некоторые специфичные оптимизации, направленные на ускорение обработки инструкций и снижение энергопотребления. Например, операции переноса данных в регистрах происходят путем переименования ссылок, а не через исполнение микроопераций. Кроме того, при прохождении ветвлений применяется техника сохранения контрольных точек, что позволяет быстро восстанавливать конвейер при ошибках в предсказании переходов.

Загрузки и сохранения выполняются в AGU, которые симметричны и работают параллельно. По сравнению с Excavator очереди внеочередного чтения и записи сильно выросли и достигли 72 и 44 операций в глубину, что сравнимо с последними интеловскими микроархитектурами. Устройства генерации адресов могут обслужить до двух 128-битных чтений и одну 128-битную запись за такт. Буфер трансляции адресов данных (DTLB) реализован по двухуровневой схеме. L1 TLB содержит 64 записи для страниц любого размера, L2 TLB рассчитан на полторы тысячи записей, но без поддержки страниц размером 1 Гбайт.

Все исполнительные устройства Zen имеют прямой доступ к общей очереди отставки, которая рассчитана на 192 записи и может завершать исполнение до восьми команд за такт. Надо сказать, что в микроархитектурах, производных от Bulldozer, в этом месте нередко возникали заторы, поэтому в Zen разработчики перестраховались и сделали финальную часть механизма исполнения команд вдвое быстрее декодера.

Вещественночисленная часть Zen (FPU) при этом выглядит не столь впечатляюще, как целочисленная. Несмотря на то, что в новых процессорах заявлена поддержка AVX2-инструкций, весь блок FPU оптимизирован для работы с 128-битными операндами. Обработка же 256-битных чисел в рамках AVX2 распадается на пары 128-битных команд и требует, соответственно, вдвое больше времени и ресурсов.

Регистровый файл для вещественночисленных операций в Zen рассчитан на 160 128-битных вхождений, очередь планирования же состоит из двух частей, суммарно вмещающих до 96 микроопераций. Регистровые файлы целочисленной и вещественночисленной частей вычислительного ядра имеют возможность прямого обмена данными друг с другом.

Набор исполнительных ресурсов FPU представлен четырьмя устройствами, что на самом деле делает Zen существенно производительнее Bulldozer, так как в прошлой микроархитектуре предусматривалось лишь три исполнительных устройства для чисел с плавающей точкой на каждые два ядра. Два устройства предназначено для сложений, два – для умножений, а в сумме это означает, что FPU спроектирован с прицелом на работу с 128-битными командами набора FMA, но не AVX. Кроме того, на двух из четырёх устройств FPU могут выполняться инструкции набора AES, и делать это очень быстро.

Изменилась в Zen и система кеширования, что связано с необходимостью увеличить скорость подачи данных и инструкций к ядру с более высокой степенью внутреннего параллелизма. Кеш первого уровня удвоил свой размер и ассоциативность. AMD дала Zen 64-килобайтный L1-кеш с четырёхкратной ассоциативностью – для инструкций и 32-килобайтный L1-кеш с восьмикратной ассоциативностью – для данных. Увеличение размеров в данном случае должно благотворно сказаться на проценте попаданий, а ассоциативность дополнительно улучшает эту характеристику, правда, ценой некоторого увеличения энергопотребления. Каждый такт процессора кеш инструкций может выдавать по 32 байта в блок выборки, а кеш данных способен обслужить по две 16-байтные загрузки и одну 16-байтную команду сохранения данных. Обмен данными между L1- и L2-кешем во всех случаях строится по 32-байтной полнодуплексной шине.

Кеш второго уровня, индивидуальный для каждого ядра Zen, имеет размер 512 Кбайт и восьмикратную ассоциативность. Это вдвое больший объём и ассоциативность по сравнению с кеш-памятью второго уровня процессоров Skylake и Kaby Lake, что в итоге должно давать примерно 40-процентное преимущество в частоте попадания в него данных. Оба кеша, L1 и L2, – с обратной записью, что является важным усовершенствованием по сравнению со всеми Bulldozer, где L1-кеш работал по схеме со сквозной записью. Однако несмотря на то, что скорость работы кеша в Zen по сравнению с процессорами AMD предыдущего поколения заметно выросла, процессоры Intel, начиная с Haswell, имеют вдвое более быструю кеш-память за счёт ширины шины.

Кеш третьего уровня в архитектуре Zen является общим на каждые четыре ядра. Размер такого L3-кеша установлен в 8 Мбайт с 16-кратной ассоциативностью. Иными словами, у восьмиядерных Zen общий объём кеш-памяти третьего уровня – 16 Мбайт, но логически он состоит из двух полностью независимых 8-мегабайтных частей, каждая из которых живёт своей собственной жизнью. Причём алгоритм работы этого кеша – виктимный. На него не распространяется предварительная выборка, данные просто вытесняются в него из L1/L2. Таким образом, в отличие от инклюзивных кешей первого и второго уровня, L3-кеш оказывается преимущественно эксклюзивным.

То, что L3-кеш – свой для каждой четвёрки ядер, связано с особенностями компоновки полупроводникового кристалла. Он составляется из четырёхъядерных строительных блоков CPU Complex (CCX), которые на полупроводниковом кристалле размещаются бок о бок. Именно из таких блоков будут собираться многоядерные серверные процессоры, восьмиядерный же Ryzen представляет собой объединение двух CCX. Это значит, что при обращении к разным частям полного L3-кеша в многоядерных процессорах латентность будет получаться различной в зависимости от того, лежат ли данные в кеш-памяти третьего уровня, относящегося к собственному CCX или к CCX соседа. Однако AMD отдельно подумала над тем, чтобы дополнительные задержки были минимальными. Для связи различных CCX применена специальная высокоскоростная шина Infinity Fabric, основанная на технологии HyperTransport и поддерживающая приоритизацию трафика.

В заключение рассказа о микроархитектуре Zen несколько слов нужно сказать о том, как ресурсы ядра разделяются на два потока в рамках технологии SMT (Simultaneous Multi Threading). Смысл технологии состоит в том, чтобы все имеющиеся в ядре ресурсы были задействованы более полно, но конкурентное исполнение двух потоков при этом не только не должно приводить к блокировке одного потока другим. В идеале более приоритетный поток должен получать в своё распоряжение большие ресурсы. Для основных процессорных блоков, находящихся во входной части конвейера, в Zen используется разделение на основе квантования времени, когда на выполнение разных потоков поочерёдно выделяются свои временные промежутки. При этом AMD говорит о том, что на этапах предсказания ветвлений и переименования регистров выполняется анализ приоритетов, в результате которого некоторые потоки могут получить в своё распоряжение большее количество ресурсов. Основная же часть конвейера, включая декодер, планировщики, исполнительные устройства и кеш-память, разделяются между потоками по мере необходимости. Исключение сделано лишь для очереди микроопераций и для очереди отставки, которые для каждого потока продублированы.

#Первые прикидки: Zеn против Broadwell-E и Kaby Lake

В том, что микроархитектура Zen представляет собой гигантский шаг вперёд по сравнению с Bulldozer, никаких сомнений не остаётся. И дело не только в том, что для новых процессоров используется современный техпроцесс и традиционный x86-дизайн с полноценными широкими ядрами без разделяемых блоков и с поддержкой многопоточности (SMT). Сделана и масса других улучшений, благодаря чему число исполняемых одним ядром инструкций за такт выросло более чем в полтора раза. В пользу этого играет улучшенное предсказание переходов, появление кеша микроопераций, возможность отсылки на исполнение до шести микроопераций за такт (против четырёх), 60-процентное увеличение буферов планировщиков, двукратное увеличение темпа завершения и отставки микроопераций, полуторакратное увеличение глубины очередей загрузки и выгрузки данных, возможность выполнения до четырёх операций с плавающей точкой за такт (против трёх), кратное увеличение пропускной способности всех кешей и рост размеров L1-кеша, улучшения на уровне предварительной выборки данных и масса всего прочего.

Однако гораздо более интересный вопрос заключается в том, как выглядит микроархитектура Zen на фоне тех процессоров, которые есть в распоряжении Intel. И вот тут-то всё оказывается не столь очевидно. Дело в том, что Zen, хотя и спроектирован по классическим канонам, сильно отличается по строению от Broadwell и Skylake/Kaby Lake, причём наибольшие отличия касаются механизма исполнения инструкций. Как и в Bulldozer, в Zen AMD разделила целочисленные и вещественночисленные конвейеры, в то время как в процессорах Intel применены универсальные исполнительные порты, суммарное число которых, например, в Skylake/Kaby Lake доведено до восьми. Поэтому прямое сравнение архитектур проводить тяжело.

Тем не менее совершенно точно можно сказать, что по производительности работы с 256-битными AVX2-инструкциями Zen серьёзно слабее своих конкурентов. Дело в том, что в процессорах Intel, начиная с Haswell, устройства, работающие с плавающей точкой, перенастроены на 256-битные операнды. Это позволяет им обеспечивать вещественночисленную производительность из расчёта 16 FLOPs за такт, в то время как Zen со своими 128-битными устройствами может выдавать лишь вдвое меньшую скорость. Уступает Zen и в пропускной способности системы кеширования. Кеш-память процессоров Intel, начиная с Haswell, использует 64-битные пересылки данных, в то время как в Zen соответствующие шины имеют в два раза меньшую ширину. Впрочем, высокий темп работы с кешем важен лишь при работе с векторными инструкциями, а AVX2-инструкции в Zen и так исполняются медленно.

Что же касается быстродействия процессоров с микроархитектурой Zen на целочисленных данных, то тут, похоже, они могут выдавать вполне конкурентный уровень. Несмотря на то, что декодер в Skylake/Kaby Lake рассчитан на обработку пяти операций за такт против четырёх у Zen, а устройства генерации адресов могут вычислять в Haswell, Skylake и Kaby Lake по три адреса за такт, а не по два, как в новой архитектуре AMD, Zen может противопоставить всему этому мощную систему предсказания переходов и более вместительные кеши, а том числе и кеш микроопераций.

При знакомстве с новыми микроархитектурами мы всегда проверяем их эффективность простыми синтетическими тестами, которые чутко реагируют на особенности тех или иных процессорных блоков. Такое сравнение уместно и сейчас. На этот раз мы воспользовались бенчмарками, входящими в комплект тестовой утилиты AIDA64 5.80. На следующих графиках приводятся показатели производительности старших четырёхъядерных процессоров поколений Ryzen (Zen), Vishera (Piledriver), Broadwell-E и Kaby Lake, работающих на одной и той же постоянной частоте 4,0 ГГц. Для начала тесты CPU в обычном восьмиядерном режиме.

Различия в микроархитектурах приводят к тому, что производительность при различных операциях может отличаться очень сильно. Zen показывает серьёзные преимущества в шифровании, достойно проявляет себя в тесте Queen на эффективность предсказания переходов и в классическом целочисленном тесте ZLib, однако уступает интеловским процессорам в тесте на обработку изображений PhotoWorxx, где активно задействуется система кеширования данных и целочисленные AVX-инструкции.

При работе с числами с плавающей точкой ситуация становится ещё более неоднозначной.

В целом в вещественночисленных алгоритмах микроархитектура Zen уже сильна не так, как при работе с целыми числами. Относительно неплохие результаты наблюдаются только в тестах VP8 и SinJulia, которые используют наиболее простые x87-инструкции или наборы семейства SSE. Если же дело начинает касаться AVX, FMA или, что ещё хуже, AVX2-операций, Zen актуальной архитектуре Intel проигрывает, причём очень заметно.

Для сравнения те же тесты были проведены в однопоточном режиме.

Любопытно, что в однопоточном режиме относительные скоростные показатели микроархитектуры Zen хуже, чем в многопоточном случае. Это – прямое указание на то, что технология SMT у инженеров AMD получилась очень удачной. Её эффективность явно выше, чем у интеловской Hyper-Threading.

Правда, в тестах, делающих упор на операции с числами с плавающей точкой, такой закономерности уже не наблюдается. Здесь вновь приходится констатировать, что FPU-часть в новых процессорах AMD справляется со своей работой не столь хорошо, как обрабатывают числа с плавающей точкой Broadwell или Kaby Lake.

Можно ли на основании этих данных делать вывод о том, что новая микроархитектура Zen не сможет вывести производительность Ryzen в реальных задачах на должный уровень? Нет! Дело в том, что идеология разработки Zen базировалась на принципах, сильно отличающихся от подхода Intel. В то время как микропроцессорного гиганта заботят проблемы глобального масштаба, и он старается в меру своих сил управлять рынком программного обеспечения и упреждающе предоставлять в распоряжение программистов всевозможные расширения архитектуры, AMD смотреть в столь отдалённую перспективу не нужно. Инженеры этой компании проанализировали не будущие тенденции, а то, какое программное обеспечение существует сейчас, и, опираясь на собранные сведения, сделали упор на увеличение мощности наиболее востребованных в данный момент процессорных блоков. Пусть из-за этого Ryzen и демонстрирует отставание во многих синтетических тестах, зато в реальных задачах он работает с максимальной отдачей. Всё это позволило AMD не разбазаривать транзисторный бюджет ради редко используемых возможностей вроде AVX2 и получить более компактный полупроводниковый кристалл с более низкой себестоимостью.

Следующий проведённый нами низкоуровневый тест касается латентности подсистемы кеш-памяти. В этом случае для измерений мы воспользовались утилитой SiSoftware Sandra 2016.03.22.20. Полученные результаты сведены в таблицу, латентность приводится в процессорных тактах.

RyzenKaby LakeBroadwell-EVishera
L1D-кеш

Объём (на ядро)

32 Кбайт

32 Кбайт

32 Кбайт

16 Кбайт

Латентность

4

4

5

4

L1I-кеш

Объём

64 Кбайт

32 Кбайт

32 Кбайт

32 Кбайт, разделяемый на 2 ядра

Латентность

5

2-3

5

2

L2-кеш

Объём (на ядро)

512 Кбайт

256 Кбайт

256 Кбайт

1024 Кбайт, разделяемый на 2 ядра

Латентность

17

12

13

18

L3-кеш

Объём (на ядро)

2 Мбайт, разделяемый на 4 ядра

2 Мбайт, разделяемый для всех ядер

2,5 Мбайт, разделяемый для всех ядер

1 Мбайт, разделяемый для всех ядер

Латентность

36-37

22

27

76

Эффективность системы кеширования в микроархитектуре Zen по понятным причинам хуже, чем в интеловских процессорах. Так, практическая латентность L2- и L3-кешей у Ryzen выше, чем у актуальных процессоров Intel, примерно в полтора раза. Однако по сравнению с микроархитектурой Bulldozer прогресс виден очень хорошо. Наиболее сильно он проявляется в улучшении времени отклика L3-кеша.

И последняя группа тестов касается проверки контроллера памяти. В процессорах Ryzen появился новый контроллер, поддерживающий двухканальную DDR4 SDRAM, и в теории по этой характеристике они стали похожи на интеловские процессоры для платформы LGA1151. Но эффективность контроллера сильно зависит от его конкретной реализации, и поэтому мы оценили практическую пропускную способность и латентность памяти Ryzen по сравнению с альтернативами. В этих испытаниях использовался бенчмарк Stream и уже упоминавшаяся утилита SiSoftware Sandra 2016.03.22.20. Все измерения проведены с DDR4-2933, работавшей со схемой задержек 15-17-17-35.

Контроллер DDR4 SDRAM в процессорах Ryzen оказался далеко не таким удачным. Единственный случай, где он оказывается на одном уровне с контроллерами памяти процессоров Intel, — это при многопоточном последовательном доступе. В этом случае он способен выдать даже чуть лучшую пропускную способность, чем двухканальный контроллер памяти Kaby Lake. Но латентность при этом оказывается примерно в три раза хуже, чем в процессорах конкурента, что влечёт за собой и отставание Ryzen в пропускной способности памяти при однопоточной нагрузке. Иными словами, ждать от новинки компании AMD высоких результатов в приложениях, которые работают с большими массивами данных, не приходится.

#Энергопотребление Zen и 14-нм техпроцесс

Процессоры, построенные на микроархитектуре Zen, производятся на заводах GlobalFoundries по 14-нм техпроцессу 14LPP c применением FinFET-транзисторов. Важны обе составляющие. Современные нормы техпроцесса позволяют снизить площадь ядра и добиться того, что 4,8 млрд транзисторов могут разместиться на кристалле площадью всего лишь порядка 200 мм2 (по нашим расчётам).

 Полупроводниковый кристалл AMD Ryzen 7

Полупроводниковый кристалл AMD Ryzen 7

Это значит, что по плотности упаковки транзисторов AMD смогла переиграть даже Intel. По оценкам компании, преимущество перед конкурентом в плотности дизайна составляет не менее 10 процентов.

FinFET-технология же означает, что затвор транзисторов расположен вертикально, помогая не только более точно управлять каналом, но и снизить токи утечки. Это также вносит немалый вклад в энергоэффективность и позволяет достичь достаточно высоких тактовых частот.

В пользу снижения потребления играет и специальная технология Pure Power, интерактивно управляющая питанием процессора. Стараясь добиться невысокого потребления ещё в линейке своих APU инженеры AMD смогли достичь немалых успехов и сделать сравнительно экономичные чипы, даже невзирая на неудачную архитектуру и устаревший техпроцесс. Теперь все такие наработки перенесены в Zen. Новый процессорный дизайн подробно контролирует состояние чипа по температурам и токам и отключает неиспользуемые блоки или снижает их частоты. Стоит отметить, что число управляемых цепей питания в ядре Ryzen превышает 1300 штук, а число встроенных датчиков температуры и токов достигает нескольких десятков.

Рост эффективности достигается не только благодаря новой микроархитектуре, применению FinFET-транзисторов и внедрению технологии PurePower, но и специально оптимизированному физическому дизайну ядра, который во многих частях делался не автоматическими методами, а вручную. В конечном итоге энергоэффективность Ryzen просто поражает. AMD удалось вписать в 95-ваттный тепловой пакет флагманские восьмиядерные процессоры, частоты которых подпирают отметку в 4,0 ГГц. Кроме того, в линейке Ryzen есть и совершенно уникальный 65-ваттный восьмиядерник, в то время как текущие десктопные восьмиядерные процессоры Intel для настольных систем Broadwell-E имеют расчётное тепловыделение на уровне 140 Вт. Похоже, что в гонке энергоэффективности микропроцессорный гигант рискует утратить свои передовые позиции.

#Платформа Socket AM4 и новые чипсеты

Процессоры семейства Ryzen ориентированы на использование принципиально новой платформы и нового разъёма Socket AM4. Связано это в первую очередь с тем, что у AMD возникла необходимость во внедрении поддержки DDR4-памяти, которая к настоящему времени завоевала место индустриального стандарта. А заодно, пользуясь моментом, было решено перекроить всю платформу, сделав процессоры похожими на SoC. Иными словами, в интегрированный северный мост процессора был перенесён дополнительный набор контроллеров, что сделало чипсеты нового поколения крайне простыми устройствами.

Вследствие этого неудивительно, что новый процессорный разъём AM4 получил возросшее число контактов – их теперь 1331. Это значит, что Ryzen не имеют совместимости ни с какими старыми материнскими платами. К тому же AMD изменила требования к расположению на материнских платах крепёжных отверстий для систем охлаждения, и поэтому для Ryzen требуются новые кулеры или по крайней мере новые крепления для старых. Поэтому, несмотря на то, что Ryzen на первый взгляд похожи на предшественников, имеют аналогичные габариты и внешнее исполнение, вся экосистема для них должна быть полностью обновлена.

В Bulldozer в процессорном кристалле был реализован контроллер памяти. В APU последних поколений в основной чип переехал и контроллер для графической шины PCI Express. В Ryzen же в процессоре добавились дополнительные линии PCI Express, порты USB и SATA. Фактически сейчас AMD создала ситуацию, когда процессор может работать вообще без каких-либо дополнительных наборов логики, что делает возможным создание крайне простых и компактных материнских плат.

Однако начать стоит с того, что встроенный контроллер памяти в процессорах Ryzen – абсолютно новый. Он рассчитан на работу с двухканальной DDR4 SDRAM и поддерживает исключительно такую память. Обратной совместимости с DDR3 SDRAM не предусматривается. Официально контроллер памяти Ryzen поддерживает модули DDR4 с частотой до 2666 МГц, для которых на Socket AM4-материнских платах может быть предусмотрено два или четыре слота. Память с частотой выше DDR4-2666 с Ryzen тоже может применяться, но авторы процессора в этом случае не дают никаких гарантий.

Впрочем, с использованием в Socket AM4 скоростных модулей памяти могут возникать проблемы. Максимальная частота DDR4, которая может быть получена в Ryzen без изменения базовой частоты BCLK, составляет всего лишь 3200 МГц. Причём работа DDR4-2933- или DDR4-3200-памяти возможна только в случае использования пары модулей. Иными словами, по частотным возможностям контроллера памяти Ryzen сильно уступает текущим процессорам Intel для платформы LGA 1151, которые свободно покоряют режимы DDR4-4000 и выше. Но пока остаётся некоторая надежда на то, что ситуация может быть исправлена через новые версии BIOS для материнских плат.

Помимо встроенного контроллера памяти с поддержкой двухканальной DDR4 SDRAM, Ryzen предоставляет:

  • 16 линий PCI Express 3.0 для графической карты (при необходимости могут делиться на два слота по формуле 8x + 8x);
  • 4 линии PCI Express 3.0 для соединения с чипсетом либо для других устройств;
  • 4 порта USB 3.0;
  • 4 линии PCI Express 3.0 для NVMe-накопителя (могут быть переконфигурированы в 2 линии PCI Express 3.0 для NVMe-накопителя и два SATA-порта).

Таким образом, из одного только процессора Ryzen получается полноценная система-на-чипе.

Однако для типичных настольных систем имеющихся в процессоре средств расширения, скорее всего, окажется недостаточно. Поэтому к процессору по отведённым для этой цели линиям PCI Express может быть подсоединён один из наборов логики – X370, B350 или A320, которые добавят к указанному перечню какие-то дополнительные вещи. А если нужды в этом нет, то существует возможность укомплектовать Ryzen и специальными упрощёнными Mini-ITX-чипсетами X300 или A300, которые процессорные линии PCI Express 3.0 на себя не расходуют, но и к списку возможностей почти ничего не добавляют.

Основная масса свойств платформы Socket AM4 определяется именно процессором Ryzen. Чипсеты в новой платформе играют сугубо второстепенную роль, и на самом деле от них в плане функциональности платформы зависит немногое.

Даже старший набор логики X370, который, скорее всего, будет использоваться в большинстве материнских плат для энтузиастов, привносит не так уж и много: дополнительные два порта USB 3.1, по шесть портов USB 3.0 и USB 2.0, восемь портов SATA, четыре из которых могут быть конвертированы в два интерфейса SATA Express, и восемь дополнительных медленных линий PCI Express 2.0. Плюс в платформе Socket AM4 использование того или иного чипсета либо разрешает, либо запрещает разгон, деление графических линий PCI Express 3.0 x16 и режимы RAID для SATA-портов. Например, в том же X370 как в старшем чипсете допускается и разгон, и SLI- или CrossfireX-конфигурации, и RAID-массивы уровня 0, 1 и 10.

Наряду с X370 заинтересовать продвинутых пользователей может и более простой набор логики B350. В нём остался разрешён разгон процессора и RAID-массивы, а главное отличие от старшего варианта касается невозможности делить процессорную графическую шину на два слота. Кроме того, под нож попала часть портов USB 3.0 и SATA, которых в чипсете осталось два и шесть соответственно, плюс число линий PCI Express 2.0 сократилось до шести.

Ещё одна любопытная альтернатива – X300 – чипсет, который специально предназначается для простых компактных систем. Он к возможностям процессора ровным счётом ничего не добавляет, зато разрешает деление графической шины PCI Express 3.0 x16 на два слота и позволяет разгон процессора.

Детальные сведения о том, какие возможности предлагают в сочетании с Ryzen те или иные чипсеты, мы свели в следующей таблице.

AMD X370AMD B350AMD A320AMD X300AMD A300
Процессор PCI Express 3.0 x16 для GPU x16 или x8+x8 x16 x16 x16 или x8+x8 x16
PCI Express 3.0 для SSD x4 или x2 + 2 SATA x4 или x2 + 2 SATA x4 или x2 + 2 SATA x4 или x2 + 2 SATA x4 или x2 + 2 SATA
PCI Express 3.0 Недоступно Недоступно Недоступно x4 x4
USB 3.0 4 4 4 4 4
Разгон Есть Есть Нет Есть Нет
Чипсет PCI Express 2.0 x8 x6 x4 Нет Нет
SATA 8 6 6 0 0
SATA RAID 0, 1, 10 0, 1, 10 0, 1, 10 0, 1 0, 1
USB 3.1 2 2 1 0 0
USB 3.0 6 2 2 0 0
USB 2.0 6 6 6 0 0

Хотя наборы логики и несут на себе название AMD, в их разработке первоочередную роль играла компания ASMedia, известная по своим разнообразным контроллерам. Именно благодаря ей AMD смогла первой вывести на рынок наборы логики с поддержкой портов USB 3.1 с пропускной способностью 10 Гбит/с. Однако врождённой поддержки разъёмов Type-C при этом в чипсетах AMD нет. Для того чтобы на плате появился удобный симметричный разъём USB, производителям материнок придётся раскошелиться на дополнительный чип-драйвер.

Благодаря поддержке USB 3.1 наборы логики для платформы Socket AM4 выглядят современно, но особенно обольщаться по поводу их возможностей всё-таки не следует. В то время как интеловские наборы логики двухсотой серии могут обеспечивать работу до 30 высокоскоростных портов (PCIe 3.0, SATA и USB 3.0), даже у старшего AMD X370 таких портов вдвое меньше. Частично это компенсируется возможностями встроенного в процессор северного моста, но тем не менее платформа Intel позволяет создавать более гибкие конфигурации с более широкими возможностями подключения дополнительных устройств.

Есть в чипсетах AMD и ещё один изъян. Для удешевления они производятся по 55-нм техпроцессу, и потому, несмотря на свою относительную простоту, назвать их особенно экономичными нельзя. Они в любом случае требуют охлаждения (хотя бы пассивного) на материнской плате.

#Линейка Ryzen 7

Сегодня, 2 марта 2017 года, компания AMD начинает продажи первой партии своих принципиально новых процессоров Ryzen. И это – воистину историческое событие: продуктов, на которые был бы возложен подобный груз ожиданий, на процессорном рынке не было уже очень давно. Шутка ли – AMD собирается составить конкуренцию старшим интеловским процессорам для высокопроизводительных десктопов, но при этом чуть ли не вдвое понизить ценовую планку.

В течение первой фазы вывода Ryzen на рынок AMD собирается сделать ставку на свои восьмиядерные процессоры, отнесённые к семейству Ryzen 7. Это – наиболее дорогие десктопные носители новой микроархитектуры Zen со стоимостью от $330 до $500. Но несмотря на относительно высокую цену, компания ожидает чуть ли не ажиотажного спроса на новинку и серьёзно подготовилась к нему. Товарные партии Ryzen 7 уже лежат на складах ведущих магазинов, а всего AMD предварительно произвела порядка миллиона процессоров.

Одними только восьмиядерниками Ryzen 7 дело, естественно, не ограничится, но более простые и дешёвые версии новых процессоров AMD Ryzen 5 и Ryzen 3, которые будут обладать шестью и четырьмя вычислительными ядрами соответственно, придут на рынок позднее. Семейство Ryzen 5 появится в течение второго квартала (скорее всего, в начале июня), а Ryzen 3 будут представлены во второй половине текущего года. Поэтому на данный момент для поклонников компании AMD доступны лишь три восьмиядерные альтернативы с разными частотами.

Ядра/ потокиНоминальная частотаТурбо частотаXFRL2-кешL3-кешTDP, ВтРазгонЦена
Ryzen 7 1800X 8/16 3,6 ГГц 4,0 ГГц +100 МГц 8 x 512 Кбайт 2 x 8 Мбайт 95 Разрешён $499
Ryzen 7 1700X 8/16 3,4 ГГц 3,8 ГГц +100 МГц 8 x 512 Кбайт 2 x 8 Мбайт 95 Разрешён $399
Ryzen 7 1700 8/16 3,0 ГГц 3,7 ГГц +50 МГц 8 x 512 Кбайт 2 x 8 Мбайт 65 Разрешён $329

В конечном итоге флагманский процессор в линейке Ryzen 7, 1800X, получил базовую частоту 3,6 ГГц с турборежимом до 4,0 ГГц, и с учётом того, что речь идёт о процессоре с восемью вычислительными ядрами и расчётным тепловыделением 95 Вт, выглядит это весьма впечатляюще. Старший интеловский восьмиядерник, Core i7-6900K, например, предлагает базовую частоту 3,2 ГГц, а в турборежиме разгоняется лишь до 3,7 ГГц, что явно указывает на отсутствие у AMD каких-то критичных проблем с масштабируемостью нового для компании 14-нм производственного процесса. Так, сопоставима с Core i7-6900K по частотам не старшая, а средняя четырёхсотдолларовая модель в линейке Ryzen 7, 1700X.

Официальные цены Ryzen 7 явно говорят о том, что в позиционировании новинок AMD придерживается несколько иных принципов, нежели Intel. Компания делает ставку на большую массовость. При этом Ryzen 7 1800X она видит как вдвое более дешёвую альтернативу для Core i7-6900K. Ryzen 7 1700X противопоставляется не восьмиядернику, а похожему по цене шестиядерному процессору Core i7-6800K. Ryzen 7 1700 же объявлен прямым конкурентом для четырёхъядерного Core i7-7700K. Иными словами, старая тактика AMD, когда она пыталась противопоставлять предложениям Intel превосходящее число ядер по более низкой цене, находит отражение и в новой линейке. Однако теперь ядра у AMD куда производительнее, чем раньше, и семейство Ryzen 7 действительно выглядит очень сильным.

Говоря о ценообразовании, стоит затронуть и ещё один важный момент – стоимость материнских плат. Платформа Socket AM4 спроектирована таким образом, что позволяет строить очень недорогие конфигурации, и в целом платы для Ryzen будут заметно дешевле плат для Core i7, особенно если мы говорим о процессорах в исполнении LGA2011-3. Так, например, стоимость флагманских Socket AM4-платформ уровня ASUS ROG видится в районе $250-260, а обычные платы на базе чипсета AMD X370 будут продаваться за $150-170. Массовые же платы на основе AMD B350, которые, тем не менее, вполне подходят для разгона Ryzen 7, можно будут купить за сумму порядка $90-100.

Анонсируя процессоры линейки Ryzen 7, компания AMD не сочла за труд пояснить их обозначения. Естественно, для новых процессоров придуманы новые модельные номера, и пока они выглядят вполне логично.

Цифра после торговой марки Ryzen определяет класс процессора (7 – для энтузиастов, 5 – производительный, 3 — массовый), а числовой индекс указывает на поколение архитектуры Zen (первая цифра) и общий уровень быстродействия (вторая цифра). Третья-четвёртая цифры индекса пока зарезервированы для последующих моделей с немного более высокой тактовой частотой, которые, вероятно, появятся со временем. Кроме того, в конце к модельному номеру может быть добавлено буквенное окончание: X – для наиболее скоростных процессоров с технологией XFR, G – для процессоров с интегрированным графическим ядром, T – для энергоэффективных моделей CPU, S — для экономичных версий APU, а также H, U и M – для мобильных версий Ryzen.

На данный момент из всех возможных окончаний используется лишь буква X – в представленной линейке Ryzen 7 таких процессоров сразу два. Однако никакого особенного глубинного смысла, как предполагалось вначале, в ней нет. Да, процессоры Ryzen 7 1800X и Ryzen 7 1700X действительно поддерживают более агрессивный вариант технологии XFR (Extended Frequency Range), которая обещает дополнительный авторазгон процессора за пределы турборежима в том случае, если это позволяет температурный режим. Но суровая правда в том, что максимальное автоматическое увеличение частоты в рамках XFR даже для процессоров с окончанием X в названии ограничено величиной 100 МГц. Причём оно возможно исключительно в случае однопоточной нагрузки.

#AMD Ryzen 7 1800X в подробностях

Для знакомства с новой линейкой процессоров мы получили от компании AMD флагманскую модель, Ryzen 7 1800X.

Внешне этот процессор походит на своих предшественников серии FX, однако возросшее на 40 процентов число ножек видно невооружённым глазом. Любопытно, что AMD остаётся верна PGA-исполнению процессоров в потребительском сегменте, в то время как серверные продукты компании давно переводятся на LGA.

Процессор устанавливается в специальный разъём Socket AM4, который теперь становится базовым для всего ассортимента процессоров AMD для настольных компьютеров. С ним уже совместимы основанные на архитектуре Excavator гибридные процессоры Bristol Ridge, в него же будут устанавливаться и их последователи, APU поколения Raven Ridge. Более того, AMD говорит и о том, что высокопроизводительные CPU следующего поколения Zen+ с Socket AM4 совместимости не утратят и этот процессорный разъём останется актуальным как минимум до 2020 года.

Вот таким образом определяется Ryzen 7 1800X диагностической утилитой CPU-Z.

Перед нами действительно новый 8-ядерный процессор компании AMD с кодовым именем Summit Ridge и микроархитектурой Zen, который выделяется поддержкой SMT и способностью исполнять 16 потоков одновременно, кеш-памятью второго уровня объёмом 512 Кбайт на ядро и L3-кешем из двух частей по 8 Мбайт.

С рабочими частотами ситуация обстоит следующим образом:

  • В состоянии покоя частота сбрасывается до 2,2 ГГц.
  • При обычной нагрузке на все ядра реальная частота в большинстве случаев составляет 3,7 ГГц. Но если процессору приходится сталкиваться с серьёзными задачами, решаемыми с задействованием FMA/AVX-команд, частота может падать до 3,6 или даже 3,55 ГГц.
  • В случае если работой загружено одно или два ядра, процессор получает возможность включать турборежим, в котором он поднимает свою частоту вплоть до 4,0 ГГц. Однако технология Precision Boost управляет процессором очень гибко, и в большинстве случаев частота оказывается где-то в середине интервала от 3,7 до 4,0 ГГц. Причём дискретность её изменения составляет 25 МГц.
  • При однопоточной нагрузке дополнительно активируется технология XFR, которая доводит рабочую частоту до отметки 4,1 ГГц.

Некоторое недоумение вызывает высокое напряжение, которое требуется процессору для работы. Во-первых, оно сильно плавает во время работы системы, и в особенности во время простоя или небольших нагрузок. Во-вторых, абсолютные значения этого напряжения выглядят несколько шокирующе. Например, для нашего экземпляра Ryzen 7 1800X мы наблюдали штатные напряжения VCORE на уровне 1,4-1,45 В. Для процессора, выпущенного по 14-нм технологии, да ещё и такого, который должен показывать TDP на уровне 95 Вт, это выглядит несколько за гранью.

Но роль тут играет та схема, которую AMD использует в Ryzen для того, чтобы формировать питание отдельных ядер. Дело в том, что VCORE ни на какие внутрипроцессорные узлы в чистом виде не подаётся. За формирование напряжений VDD, которые поступают на отдельные ядра и кеш-память, в Ryzen отвечает особая силовая схема – LDO (Low Drop-Out). Это – не полноценный интегрированный стабилизатор напряжения, как использовался в Haswell, а гораздо более простая линейная схема, которая лишь перераспределяет питание между ядрами. Но в результате её работы максимальное напряжение получают лишь те ядра, на которые ложится максимальная нагрузка и которые в нём действительно нуждаются. Иными словами, высокие значения VCORE пугать не должны, поскольку это – некий предельный уровень, который достигается лишь отдельными узлами процессора и лишь тогда, когда в этом есть реальная необходимость для стабильной работы.

Однако всё равно ситуация с нагревом процессора даже при его работе в номинальном режиме выглядит не слишком обнадёживающе. При тестировании теплового режима в Prime 28.10 максимальные температуры по внутрипроцессорному датчику доходили до 88 градусов, а датчик на материнской плате, находящийся внутри сокета, детектировал температуры до 62 градусов. Это при том, что для отвода тепла от процессора использовался достаточно производительный кулер Noctua NH-U14S.

Иными словами, несмотря на формальное соответствие требованиям 95-ваттного теплового пакета, Ryzen 7 1800X нуждается в мощном охлаждении. А если думать о разгоне, то грамотному подбору кулера надо уделить особое внимание. Впрочем, 100 градусов температурным пределом для Ryzen не является, поэтому в данном случае высокие температуры к троттлингу и снижению производительности не приводят.

#Разгон

То, как разгоняется (а вернее, не разгоняется) Ryzen 7 1800X, очень хочется списать на сырость платформы. Добиться стабильной работы этого процессора на частотах, хоть немного превышающих номинальные значения, нам удалось с большим трудом. В разгоне прогресс по частоте идёт очень вяло, а дополнительно поднимать напряжение VCORE с учётом того, что оно уже в номинале превышает 1,4 В, да ещё и сильно «гуляет» в широких пределах, несколько боязно.

Стабильный максимум, которого удалось добиться, составил всего лишь 4,0 ГГц. Более же высокую частоту процессор уже не брал. Система загружалась вплоть до частоты 4,25 ГГц, однако ни о какой работе без вылетов и зависаний речь, к сожалению, не шла. Для проверки мы пользовались утилитой Prime 95 28.10, и ей удавалось обрушить систему буквально за несколько минут, даже если была выбрана частота 4,05 ГГц.

Впрочем, и работа Ryzen 7 1800X на частоте 4,0 ГГц внушала определённое беспокойство. Во-первых, для того, чтобы система проходила тесты стабильности, напряжение питания CPU пришлось поднять до 1,55 В. В том, что долговременная эксплуатация 14-нм чипа при таком напряжении не будет приводить к деградации полупроводникового кристалла, есть вполне обоснованные сомнения. Тем более что при каждой перезагрузке материнская плата ругалась на опасное превышение напряжения процессора.

Во-вторых, температура работающего с таким разгоном CPU, выдаваемая встроенным датчиком, зашкаливала за 100 градусов, несмотря на то, что для охлаждения в наших опытах использовался производительный кулер Noctua NH-U14S. Никакого троттлинга это не вызывало, но температуры порядка 105 градусов на безопасный нагрев похожи не сильно. Особенно если принять во внимание тот факт, что процессорная крышка у Ryzen к полупроводниковому кристаллу припаивается, а не сажается на пасту, как у LGA1151-процессоров конкурента.

В итоге разгон Ryzen 7 1800X смог принести увеличение частоты лишь на 8-10 процентов относительно номинала. Столь скромный результат не позволил нам выбраться за границы частот турборежима, но безопасность даже столь скромного повышения частоты в контексте постоянного использования системы находится под большим вопросом. Всё это приводит к неутешительному выводу о том, что оверклокерский потенциал у новых процессоров AMD откровенно низкий, и Ryzen проигрывает здесь процессорам конкурента. Например, тот же Core i7-6900K гонится от своей номинальной частоты на 20-25 процентов и способен при воздушном охлаждении брать планку в 4,2 ГГц, которая для Ryzen 7 1800X находится за пределами возможностей.

Впрочем, пока есть слабая надежда, что причиной таких оверклокерских страданий выступает «сырость» платформы. Например, сама AMD в части разгона обещала совсем иное. Согласно заявлениям представителей компании, её новые 14-нм процессоры должны быть способны разгоняться при воздушном охлаждении до 4,2-4,3 ГГц с напряжениями порядка 1,45 В. Наш опыт пока категорически опровергает эти обещания, но некоторая надежда на улучшение ситуации всё-таки остаётся. Поэтому мы ещё вернёмся к теме разгона процессора в наших будущих статьях.

Не смогли стать источником оптимизма и эксперименты по разгону подсистемы памяти Ryzen. Максимальный режим DDR4, который позволяет выставить контроллер памяти Ryzen 7 без увеличения частоты BCLK, – это DDR4-3200. Но даже в режиме DDR4-2933 с этим процессором работают далеко не любые модули. Например, комплект 2 x 8 Гбайт DDR4-3200 Corsair Vengeance LPX CMK16GX4M2B3200C16, который мы используем в тестах интеловских систем, запустился в Socket AM4-системе с Ryzen 7 1800X только в режиме DDR4-2400.

Взамен компания AMD предоставила нам другой, похожий комплект аналогичного объёма, Corsair Vengeance LPX CMK16GX4M2B3000C15. Он рассчитан на частоту DDR4-3000, и с ним мы смогли провести все тесты в режиме DDR4-2933. Однако любые попытки заставить его работать на большей скорости провалились. Иными словами, пока ситуация выглядит так, как будто для того, чтобы запустить подсистему памяти Ryzen на высоких частотах, нужны какие-то специальные «отборные» модули. Впрочем, и здесь остаётся надежда на то, что со временем сможет помочь оптимизация BIOS материнских плат.

В дополнение к сказанному следует упомянуть о специальной утилите AMD Ryzen Master, которую инженеры компании выпустили для управления оверклокингом новых процессоров из операционной системы. Впрочем, к большому сожалению, результаты разгона она улучшить не в состоянии и лишь добавляет некоторое удобство в этот процесс, позволяя в некоторых случаях обходиться без постоянных перезагрузок и утомительного подбора настроек в среде BIOS.

К тому же набор возможностей AMD Ryzen Master несколько ограничен. Она лишь позволяет менять частоту процессорных ядер, напряжение VCORE , а также частоту и тайминги памяти. Причём часто после изменения параметров перезагрузка системы всё-таки требуется для вступления их в силу. Кроме того, пока утилита находится в бета-статусе, а потому ряд параметров она искажает, а ряд не отображает вообще. Так что полноценно пользоваться ей можно будет лишь после того, как все недочёты и недоделки будут исправлены разработчиками.

Тестирование. Выводы

#Описание тестовых систем и методики тестирования

Тестирование процессора AMD Ryzen 7 1800X было проведено в полном соответствии с заветами производителя: флагманский продукт AMD был противопоставлен всей актуальной линейке процессоров Core i7. Кроме того, не забыли мы включить в тесты и старший процессор линейки AMD FX.

В конечном итоге полный список задействованных в тестовых системах комплектующих получил следующий вид:

  • Процессоры:
    • AMD Ryzen 7 1800X (Summit Ridge, 8 ядер + SMT, 3,6-4,0 ГГц, 16 Мбайт L3);
    • AMD FX-9590 (Vishera, 8 ядер, 4,7-5,0 ГГц, 8 Мбайт L3);
    • Intel Core i7-7700K (Kaby Lake, 4 ядра + HT, 4,2-4,5 ГГц, 8 Мбайт L3);
    • Intel Core i7-6950X Extreme Edition (Broadwell-E, 10 ядер + HT, 3,0-4,0 ГГц, 25 Мбайт L3);
    • Intel Core i7-6900K (Broadwell-E, 8 ядер + HT, 3,2-4,0 ГГц, 20 Мбайт L3);
    • Intel Core i7-6800K (Broadwell-E, 6 ядер + HT, 3,4-3,8 ГГц, 15 Мбайт L3).
    • Процессорный кулер: Noctua NH-U14S.
    • Материнские платы:
      • ASUS Crosshair IV Hero (Socket AM4, AMD X370);
      • ASUS 970 PRO Gaming/Aura (Socket AM3+, AMD 970 + SB950);
      • ASUS Maximus IX Hero (LGA1151, Intel Z270);
      • ASUS X99-Deluxe (LGA2011-v3, Intel X99).
      • Память:
        • 2 × 8 Гбайт DDR4-3000 SDRAM, 15-17-17-35 (Corsair Vengeance LPX CMK16GX4M2A3000C15).
        • 4 × 4 Гбайт DDR4-3000 SDRAM, 15-17-17-35 (G.Skill [Ripjaws 4] F4-3000C15Q-16GRR).
        • 2 × 8 Гбайт DDR3-2133 SDRAM, 9-11-11-31 (G.Skill [TridentX] F3-2133C9D-16GTX).
        • Видеокарта: NVIDIA GeForce GTX 1080 (8 Гбайт/256-бит GDDR5X, 1607-1733/10000 МГц).
        • Дисковая подсистема: Kingston HyperX Savage 480 GB (SHSS37A/480G).
        • Блок питания: Corsair RM850i (80 Plus Gold, 850 Вт).

Тестирование выполнялось в операционной системе Microsoft Windows 10 Enterprise Build 14393 с использованием следующего комплекта драйверов:

  • AMD Chipset Driver Crimson ReLive Edition 17.2.1;
  • Intel Chipset Driver 10.1.1.38;
  • Intel Management Engine Interface Driver 11.6.0.1030;
  • Intel Turbo Boost Max Technology 3.0 1.0.0.1029;
  • NVIDIA GeForce 378.66 Driver.

Описание использовавшихся для измерения вычислительной производительности инструментов:

Комплексные бенчмарки:

  • BAPCo SYSmark 2014 SE – тестирование в сценариях Office Productivity (офисная работа: подготовка текстов, обработка электронных таблиц, работа с электронной почтой и посещение интернет-сайтов), Media Creation (работа над мультимедийным контентом — создание рекламного ролика с использованием предварительно отснятых цифровых изображений и видео), Data/Financial Analysis (обработка архива с финансовыми данными, их статистический анализ и прогнозирование инвестиций на основе некой модели) и Responsiveness (анализ отзывчивости системы при запуске приложений, открытии файлов, работе с интернет-браузером с большим количеством открытых вкладок, мультизадачности, копировании файлов, пакетных операциях с фотографиями, шифровании и архивации файлов и установке программ).
  • Futuremark 3DMark Professional Edition 2.2.3509 — тестирование в сцене Time Spy 1.0.

Приложения:

  • 7-zip 16.04 – тестирование скорости архивации. Измеряется время, затрачиваемое архиватором на сжатие директории с различными файлами общим объёмом 1,7 Гбайт. Используется алгоритм LZMA2 и максимальная степень компрессии.
  • Adobe After Effects CC 2017 – тестирование скорости рендеринга методом трассировки лучей. Измеряется время, затрачиваемое системой на обсчёт в разрешении 1920 × 1080@30fps заранее подготовленного видеоролика.
  • Adobe Photoshop CC 2017 — тестирование производительности при обработке графических изображений. Измеряется среднее время выполнения тестового скрипта, представляющего собой творчески переработанный Retouch Artists Photoshop Speed Test, который включает типичную обработку четырёх 24-мегапиксельных изображений, сделанных цифровой камерой.
  • Adobe Photoshop Lightroom 6.8 – тестирование производительности при пакетной обработке серии изображений в RAW-формате. Тестовый сценарий включает постобработку и экспорт в JPEG с разрешением 1920 × 1080 и максимальным качеством двухсот 12-мегапиксельных изображений в RAW-формате, сделанных цифровой камерой Nikon D300.
  • Adobe Premiere Pro CC 2017 — тестирование производительности при нелинейном видеомонтаже. Измеряется время рендеринга в формат H.264 Blu-Ray проекта, содержащего HDV 1080p25 видеоряд с наложением различных эффектов.
  • Autodesk 3ds max 2017 — тестирование скорости финального рендеринга. Измеряется время, затрачиваемое на рендеринг в разрешении 1920 × 1080 с применением рендерера mental ray стандартной сцены Hummer.
  • Blender 2.78a – тестирование скорости финального рендеринга в одном из популярных свободных пакетов для создания трёхмерной графики. Измеряется продолжительность построения финальной модели из Blender Cycles Benchmark rev4.
  • VeraCrypt 1.19 – тестирование криптографической производительности. Используется встроенный в программу бенчмарк, задействующий тройное шифрование Serpent-Twofish-AES.
  • WinRAR 5.40 — тестирование скорости архивации. Измеряется время, затрачиваемое архиватором на сжатие директории с различными файлами общим объёмом 1,7 Гбайт. Используется максимальная степень компрессии.
  • x264 r2744 — тестирование скорости транскодирования видео в формат H.264/AVC. Для оценки производительности используется исходный 1080p@50FPS AVC-видеофайл, имеющий битрейт около 30 Мбит/с.
  • x265 2.2+17 8bpp — тестирование скорости транскодирования видео в перспективный формат H.265/HEVC. Для оценки производительности используется тот же видеофайл, что и в тесте скорости транскодирования кодером x264.

Игры:

  • Ashes of Singularity. Разрешение 1920 × 1080, DirectX 11, Quality Profile = High, MSAA=2x.
  • Battlefield 1. Разрешение 1920 × 1080, DirectX 11, Graphics Quality = Ultra.
  • Civilization VI. Разрешение 1920 × 1080, DirectX 11, MSAA = 4x, Performance Impact = Ultra, Memory Impact = Ultra.
  • Deus Ex: Mankind Divided. Разрешение 1920 × 1080, DirectX 11, Preset = Very High.
  • Grand Theft Auto V. Разрешение 1920 × 1080, DirectX Version = DirectX 11, FXAA = Off, MSAA = x4, NVIDIA TXAA = Off, Population Density = Maximum, Population Variety = Maximum, Distance Scaling = Maximum, Texture Quality = Very High, Shader Quality = Very High, Shadow Quality = Very High, Reflection Quality = Ultra, Reflection MSAA = x4, Water Quality = Very High, Particles Quality = Very High, Grass Quality = Ultra, Soft Shadow = Softest, Post FX = Ultra, In-Game Depth Of Field Effects = On, Anisotropic Filtering = x16, Ambient Occlusion = High, Tessellation = Very High, Long Shadows = On, High Resolution Shadows = On, High Detail Streaming While Flying = On, Extended Distance Scaling = Maximum, Extended Shadows Distance = Maximum.
  • Hitman™. Разрешение 1920 × 1080, DirectX 12, Super Sampling = 1.0, Level of Detail = Ultra, Anti-Aliasing = FXAA, Texture Quality = High, Texture Filter = Anisotropic 16x, SSAO = On, Shadow Maps = Ultra, Shadow Resolution = High.
  • Metro: Last Light Redux. Разрешение 1920 × 1080, DirectX 11, Very High Quality, Texture Filtering = AF 16X, Motion Blur = Normal, SSAA = On, Tessellation = Normal, Advanced PhysX = Off. При тестировании используется сцена Scene 1.
  • Rise of the Tomb Raider. Разрешение 1920 × 1080, DirectX 11, Preset = Very High.
  • The Witcher 3: Wild Hunt. Разрешение 1920 × 1080, Graphics Preset = High, Postprocessing Preset = High.
  • Total War: WARHAMMER. Разрешение 1920 × 1080, DirectX 11, Quality = Ultra.

#Производительность в комплексных бенчмарках

SYSmark 2014 SE – главный комплексный тест, по которому можно судить о том, какую средневзвешенную производительность выдает та или иная система в самых типовых и самых массовых приложениях. И этот тест считает, что по производительности Ryzen 7 1800X находится где-то между Core i7-6900K и Core i7-6800K, и это на самом деле очень даже неплохо, поскольку результат старшего из процессоров семейства AMD FX где-то на 30 процентов ниже. К тому же нужно понимать, что существенная доля имеющегося программного обеспечения офисного характера, которая используется для определения производительности в SYSmark, продолжает создавать нагрузку из небольшого количества потоков. И процессоры такого калибра, как Ryzen 7 1800X, попросту не раскрывают свой потенциал. Об этом косвенно говорит и тот факт, что четырёхъядерный Core i7-7700K с высокой тактовой частотой занимает место во главе диаграммы, обходя в том числе и восьми- и десятиядерные процессоры Intel.

Больше информации могут дать результаты, полученные в отдельных сценариях SYSmark 2014 SE.

Глядя на представленные данные, можно сделать вполне естественный вывод о том, что Ryzen 7 1800X – процессор, ориентированный главным образом на работу с многопоточной нагрузкой. В сценарии Data/Financial Analysis, где многопоточность играет первостепенную роль, новинке компании AMD удаётся выступить даже лучше, чем интеловскому восьмиядернику Core i7-6900K. В других же сценариях по уровню производительности Ryzen 7 1800X ближе к Core i7-6800K, что, тоже очень неплохо, если вспомнить о стоимости процессора AMD. Главное, что AMD в новой микроархитектуре Zen действительно удалось серьёзно улучшить однопоточную производительность, и это проявляется в том, что никаких особых провалов, как были у процессоров класса Bulldozer, в профиле производительности Ryzen не наблюдается. А в сценарии Media Creation, посвящённом созданию и обработке мультимедийного контента, преимущество Ryzen 7 1800X перед FX-9590 достигает более чем убедительного 75-процентного уровня.

Бенчмарк 3DMark, оценивающий игровую производительность платформ, рассматривает Ryzen 7 1800X как ещё более выдающийся процессор. Этот тест хорошо оптимизирован под многопоточные нагрузки, поэтому в нём Ryzen 7 1800X почти настигает по производительности интеловский восьмиядерник, Core i7-6900K.

#Производительность в ресурсоёмких приложениях

Если говорить о картине в целом, то Ryzen 7 1800X лишь чуть медленнее, чем интеловский субфлагман Core i7-6900K, и это для компании AMD это однозначный успех. Выгодным предложением Ryzen 7 1800X окажется и для пользователей, поскольку этот процессор является настоящим и полноценным восьмиядерником с невиданной для CPU такого класса 500-долларовой ценой.

Однако нужно иметь в виду, что между производительностью Ryzen 7 1800X и Core i7-6900K нет никакой однозначной пропорции. Эти процессоры сильно разняться по микроархитектуре, поэтому в приложениях разного характера соотношение их производительности может получаться различным. Лучше всего у Ryzen дело обстоит с рендерингом, обработкой и кодированием видео в формате H.264, а также при шифровании. В таких случаях Ryzen 7 1800X может обеспечить даже более высокую по сравнению с Core i7-6900K производительность, причём уровень превосходства может доходить до 5-10 процентов.

Перекодирование в формат H.265 – уже не столь благоприятная для Ryzen 7 1800X задача, поскольку для её решения требуется активно использовать AVX2-инструкции, которые в архитектуре Zen реализованы не так эффективно. Отстаёт от Core i7-6900K новый флагман AMD и в задачах обработки изображений. Особенно это проявляется в Lightroom, последние версии которого стали очень активно использовать AVX2. Но хуже всего дело обстоит с архиваторами, что обнажает относительно низкую эффективность подсистемы памяти Ryzen. Проблема тут в том, что L3-кеш в новых CPU компании AMD разделён на две независимые части по 8 Мбайт, а латентность DDR4-контроллера памяти ставит антирекорды. К тому же микроархитектура Zen поддерживает лишь 32-байтные пересылки данных с кеш-памятью, в то время как процессоры Intel, начиная с поколения Haswell, умеют это делать с вдвое более высокой скоростью.

В итоге вырисовывается целый ряд ресурсоёмких задач, где Ryzen 7 1800X можно сопоставить по производительности лишь с Core i7-6800K или Core i7-7700K. Но к счастью, ряд этот не слишком обширен.

#Производительность в играх

Игровые тесты, которые мы проводим при испытаниях CPU, в первую очередь ставят своей целью раскрытие процессорной составляющей производительности. Именно поэтому все измерения проводятся в FullHD-разрешении, а для сравнения выбираются те игры, зависимость частоты кадров в которых от мощности процессора проявляется сильнее.

Игры особого повода для оптимизма в отношении Ryzen не дают. Нет, конечно, это – не процессоры серии FX, игровая производительность которых уже совсем не соответствует актуальным требованиям. Ryzen 7 1800X выдаёт более чем приемлемый на современном этапе уровень игровой производительности, и видеокарты класса GeForce GTX 1080 он, безусловно, вытягивает без вопросов. Но если смотреть на относительные показатели быстродействия, то окажется, что использованные для сравнения процессоры Intel Core i7 имеют более высокий игровой потенциал – при высоком качестве графики это видно даже в самом обычном FullHD-разрешении.

Причины такого положения дел хорошо понятны: медленный контроллер памяти Ryzen и более слабая, чем у интеловских процессоров, скорость работы FPU-части. Именно из-за этого и возникает ощущение, что в тестирование Ryzen 7 1800X в играх надо было включать и представителей семейства Core i5. Судя по всему, именно с Core i5-7600K, а не с представителями семейства Core i7 следовало бы здесь сопоставлять новинку. Мы обязательно еще вернемся к вопросу использования новой платформы AMD в качестве игровой и проведем гораздо более детальные тестирования.

Тем не менее нужно ещё раз подчеркнуть, что на данный момент мощности Ryzen 7 1800X прекрасно хватает для того, чтобы обеспечивать высокую частоту кадров в играх. К тому же у нового продукта AMD в наличии восемь полноценных ядер, которые могут стать хорошим подспорьем в новых геймерских проектах, которые хоть и робко, но всё-таки движутся в сторону полноценного задействования многопоточности.

#Энергопотребление

Ситуация с энергопотреблением – ещё один интригующий раздел сегодняшнего тестирования. AMD перевела свои процессоры на современный 14-нм техпроцесс и оптимизировала архитектуру с явным прицелом на энергоэффективность. В результате теперь компания заявляет, что восьмиядерные Ryzen вписываются в 95-ваттный тепловой пакет. То есть они должны быть заметно экономичнее интеловских LGA2011-3-процессоров с типичным тепловыделением на уровне 140 Вт. Стала ли ситуация с реальным энергопотреблением тем местом, где Ryzen 7 1800X может одержать безоговорочную победу над конкурентом? Давайте проверим.

Используемый нами в тестовой системе новый цифровой блок питания Corsair RM850i позволяет контролировать потребляемую и выдаваемую электрическую мощность, чем мы и пользуемся для измерений. На графике ниже приводится полное потребление систем (без монитора), измеренное «после» блока питания и представляющее собой сумму энергопотребления всех задействованных в системе компонентов. КПД самого блока питания в данном случае не учитывается.

В простое платформа Socket AM4 действительно выглядит очень экономичной. И это неудивительно, в Ryzen применены передовые энергосберегающие технологии, не отличаются особыми энергетическими аппетитами и сопровождающие его наборы микросхем системной логики.

А вот при рендеринге в Blender ситуация с потреблением выглядит совсем не так, как ожидалось. Под нагрузкой система с Ryzen 7 1800X требует энергии больше, чем платформа на базе Core i7-6900K или даже Core i7-6950X.

А вот как выглядит ситуация с потреблением при максимально возможной нагрузке: в утилите Prime 28.10, которая активно использует чрезвычайно энергоёмкие FMA- и AVX2-инструкции.

В предельном потреблении Ryzen 7 1800X всё же удаётся показать результат несколько лучший, чем у Core i7-6900K. Речь, конечно, идёт не о 30-процентной разнице, о которой говорится в спецификациях, а об отличии на уровне всего нескольких ватт. Плюс, не нужно забывать, что производительность процессоров Intel на AVX2-инструкциях заметно выше. В результате напрашивается логичный вывод, что Intel всё же удалось сохранить своё лидерство в удельной производительности на ватт среди процессоров для десктопов.

Тем не менее Ryzen хотя и не становится лидером в этой дисциплине, но демонстрирует вполне сравнимые результаты. А уж о «печках» семейства FX и говорить не стоит: разница в предельном потреблении FX-9590 и гораздо более производительного Ryzen 7 1800X достигает полуторакратного размера! Кроме того, судя по всему, в нашем распоряжении оказался не самый удачный образец процессора, который работал при сравнительно высоком уровне номинального напряжения.

#Выводы

То, чего ждали миллионы энтузиастов, свершилось. Благодаря новой микроархитектуре Zen и процессорам Ryzen 7 компания AMD возвращается в высшую лигу. Пусть и с некоторыми оговорками, но процессоры Ryzen 7 могут рассматриваться в качестве альтернативы старшим Core i7, а большего пока и не нужно. Сделано главное: в распоряжении у AMD появилась микроархитектура, которую вполне можно оптимизировать и развивать дальше, постепенно наращивая имеющиеся успехи. Фундамент в Zen заложен добротный, ведь это – классическая широкая микроархитектура с хорошим показателем IPC (число исполняемых за такт инструкций) и достаточной энергоэффективностью. Она не имеет ничего общего с Bulldozer. В ней нет каких-то явных узких мест, и благодаря этому она вполне конкурентоспособна не только на фоне Broadwell-E, но и по сравнению с последующими итерациями Intel Core, которые совершенствуются черепашьими темпами.

Но AMD не должна забывать, что современный процессор – это не только микроархитектура. Сегодняшние Ryzen производят хорошее первое впечатление скорее не благодаря, а вопреки тому, в какую оправу попал проект Zen. Проблем разного рода на самом деле не счесть. Производительность и возможности контроллера DDR4-памяти вызывают серьёзные вопросы. Энергопотребление Ryzen оказалось явно выше, чем предполагалось изначально, что очевидно ограничивает потенциал для разгона. А материнские платы под Socket AM4 даже премиального уровня и от ведущих производителей пока производят впечатление крайне сырых продуктов. По первости это всё простительно, но перечисленные недостатки надо исправлять, причём по возможности скорее.

И в этой связи мы хотим призвать AMD (а сотрудники этой компании нас читают, мы знаем) не медлить, а начать работу над новой версией ядра Ryzen, где бы все подобные недочёты были бы устранены. Микроархитектура Zen достойна большего, и совершенно отчетливо видно что «дожать» Ryzen вполне возможно. Хочется верить, что именно так и произойдет: последние успехи компании показывают, что за последнее время она заметно преобразилась и способна на многое.

Пока же Ryzen 7 1800X можно рассматривать как хороший высокопроизводительный процессор, особенно подходящий для определённого круга задач. Задуматься над приобретением старшего Ryzen явно имеет смысл тем пользователям, основной сферой деятельности которых выступает создание контента. Рендеринг и видеомонтаж – вот те задачи, где Ryzen 7 1800X может оправдать каждый вложенный в него рубль. И не просто оправдать, а оправдать вдвойне, ведь при почти такой же, как у Core i7-6900K, производительности в задачах такого рода новинка AMD стоит вполовину дешевле.

В остальных же случаях надо взвешивать все за и против. В пользу Ryzen 7 играет привлекательная ценовая политика, эффект новизны и полноценная восьмиядерность. Но в некоторых случаях даже четырёхъядерный Core i7-7700K выглядит лучше новинки — например, такая ситуация наблюдается в играх. Конечно, не стоит делать окончательные выводы по результатам тестирования всего одного экземпляра и мы обязательно продолжим исследования новой платформы AMD. Так или иначе, появление на рынке такой альтернативы, как Ryzen 7 1800X, всерьез меняет расстановку сил и возрождает ту конкуренцию двух компаний, по которой мы, да и уверены наши читатели, уже изрядно соскучились.



Оригинал материала: https://3dnews.kz/948466