реклама
Новости Hardware

Эксперимент 100-летней давности повторили на квантовом уровне, что впустит квантовые явления в наш мир

Науке давно известен туннельный эффект, когда частицы преодолевают энергетический барьер, не имея для этого энергетических оснований. Это явление из квантового мира, которое нашло широкое применение в электронике. Теперь учёные расширили возможности туннелирования до группового поведения частиц, что стало повторением опыта 100-летней давности на квантовом уровне. Оказалось, группы электронов могут подталкивать одна другую к коллективному туннелированию.

 Образец «квантового» материала для эксперимента. Источник изображения: Lance Hayashida/Caltech

Образец «квантового» материала для эксперимента. Источник изображения: Lance Hayashida/Caltech

В 1919 году немецкий физик Генрих Баркгаузен (Heinrich Barkhausen) поставил опыт, впоследствии названный его именем. На примере помещённого в катушку ферромагнитного материала он показал, что в процессе внешнего воздействия на материал происходит скачкообразное изменение его намагниченности. В процессе опыта Баркгаузена в подсоединённом к катушке громкоговорителе, например, возникал треск, когда к ферромагнетику подносили магнит. Намагниченность отдельных доменов затрагивала соседние, и это распространялось как лавина и, в то же время, скачками, пока материал полностью не становился намагниченным.

Учёные из Калтеха (Технологического института Калифорнии) решили обнаружить такой же эффект на квантовом уровне без внешних воздействий чисто за счёт квантовых явлений. Фактически это была проверка на спонтанное групповое туннелирвоание. Они поместили в катушку такой ферромагнитный материал, как литий-гольмий-иттрий фторид, и охладили его до температуры вблизи абсолютного нуля. Катушка нужна была для измерения напряжения, которое там возникнет в случае, если в материале начнёт меняться намагниченность.

После старта эксперимента учёные начали регистрировать скачки напряжения, аналогичные по природе шумам Баркгаузена. Это указало на то, что квантово-механическое туннелирование отдельных электронов привело к групповому или совместному туннелированию частиц.

«Классически каждая из мини-лавин, в которых группы спинов меняют направление, происходит сама по себе, — говорят авторы работы. — Но мы обнаружили, что благодаря квантовому туннелированию две лавины синхронизируются друг с другом. Это результат взаимодействия двух больших групп электронов друг с другом, и благодаря своему взаимодействию они производят эти изменения. Этот эффект совместного туннелирования стал неожиданностью».

Открытие даёт надежду на создание квантовых датчиков и других электронных приборов. Фактически квантовые явления в виде группового взаимодействия электронов можно использовать как макрообъекты, что упростит эксперименты в области квантовой физики и позволит использовать эти явления в обычной электронике и не только.

Источник:

Если вы заметили ошибку — выделите ее мышью и нажмите CTRL+ENTER.
Материалы по теме
window-new
Soft
Hard
Тренды 🔥
Самые полные издания Borderlands 3 и Diablo III добавят в Game Pass, а лучшая игра 2024 года по версии 3DNews подписку скоро покинет 7 ч.
Microsoft хочет полностью избавиться от паролей — и у неё есть план 7 ч.
«Эпический» сериал Netflix по Assassin’s Creed впервые за несколько лет подал признаки жизни 7 ч.
Спустя 10 лет после релиза Enter the Gungeon получит «крупнокалиберный сиквел» — первый трейлер и подробности Enter the Gungeon 2 9 ч.
Роскомнадзор порекомендовал отказаться от использования решения Cloudflare, нарушающего законы РФ 10 ч.
«Наш контент бесплатный, а инфраструктура — нет»: ИИ-боты разоряют «Википедию» 10 ч.
Nintendo поднимет цены на игры раньше Take-Two с GTA VI — Mario Kart World для Switch 2 будет стоить $80 в «цифре» и $90 в рознице 10 ч.
Роскомнадзор наделил себя правом собирать IP-адреса россиян 11 ч.
«Торт не был ложью!»: Nintendo подтвердила релиз Hollow Knight: Silksong в 2025 году и показала 5 секунд геймплея 12 ч.
Adobe придумала монтаж без пересъёмок: Premiere Pro 25.2 получил ИИ, который добавит ролику недостающие кадры 12 ч.