реклама
Аналитика

MEMS: микроэлектромеханические системы, часть 1

Наномир на данный момент является своего рода фронтиром – передним краем науки, который пока еще только покоряют ученые-пионеры. А вот микромир уже достаточно давно освоен и в нем вовсю идет строительство. Пожалуй, самым впечатляющим типом микроструктур, которые создаются людьми, являются MEMS – микроэлектромеханические системы.

Обычно MEMS делят на два типа: сенсоры – измерительные устройства, которые переводят те или иные физические воздействия в электрический сигнал, и актуаторы (исполнительные устройства) – системы, которые занимаются обратной задачей, то есть переводом сигналов в те или иные действия. В этой части статьи поговорим о первой категории MEMS.

Пожалуй, самыми «трендовыми» из MEMS-сенсоров являются датчики движения. Они в последнее время постоянно на слуху: телефоны, коммуникаторы, игровые приставки, фотокамеры и ноутбуки все чаще и чаще снабжаются акселерометрами (датчиками ускорения) и гироскопами (датчиками поворота).

В мобильных телефонах и видеоприставках чувствительность к движениям пользователя используется в основном, что называется, «для прикола». А вот в портативных компьютерах акселерометры выполняют очень даже полезную функцию: улавливают момент, когда жесткий диск может подвергнуться повреждению из-за удара и паркуют его, диска, головки. В фототехнике использование датчиков движения не менее актуально – именно на их основе работают честные системы стабилизации изображения.

Классический гироскоп образца XIX века. Засунуть такой в iPhone или джойстик Wii довольно-таки затруднительно

Впрочем, рассуждать о том, что в реальности полезнее – активные игры на Wii, функция автоматического поворота картинки на iPhone, защита винчестера или возможность снимать фотографии без смазывания – дело неблагодарное. Покупателям нравится и то, и другое, и третье, и четвертое. Поэтому производители в последнее время стараются как можно более плотно использовать датчики движения.

Благо, возможностей у них для этого предостаточно: автопроизводители (из массовых индустрий они первыми опробовали данного рода устройства) уже несколько десятилетий активно эксплуатируют датчики движения, например, в подушках безопасности и антиблокировочных системах тормозов.

Так что соответствующие чипы давно разработаны, выпускаются целым рядом крупных и сравнительно мелких компаний и производятся в таких количествах, что цены давно и надежно сбиты до минимума. Типичный MEMS-акселерометр сегодня обходится в несколько долларов за штуку.

И места занимает – всего ничего. Для примера, размер корпуса пьезогироскопа Epson XV-8000 составляет 6x4,8x3,3 мм, а трехосного акселерометра LIS302DL производства ST Microelectronics – всего лишь 3x5x0,9 мм. Причем речь именно о размерах готового устройства с корпусом и контактами – сам кристалл еще меньше.

Датчик движения Epson XV-8000. И это далеко не самый компактный MEMS-сенсор

На сегодняшний день наиболее популярны датчики движения, основанные на конденсаторном принципе. Подвижная часть системы – классический грузик на подвесах. При наличии ускорения грузик смещается относительно неподвижной части акселерометра. Обкладка конденсатора, прикрепленная к грузику, смещается относительно обкладки на неподвижной части. Емкость меняется, при неизменном заряде меняется напряжение – это изменение можно измерить и рассчитать смещение грузика. Откуда, зная его массу и параметры подвеса, легко найти и искомое ускорение.

Основной принцип работы конденсаторных акселерометров

Это теория. На практике, MEMS-акселерометры устроены таким образом, что отделить друг от друга составные части – грузик, подвес, корпус и обкладки конденсатора – не так-то просто. Собственно, изящество MEMS в том и заключается, что в большинстве случаев в одной детали здесь удается (а вернее, попросту приходится) комбинировать сразу несколько предметов.

Относительно простой, но чрезвычайно миниатюрный и чувствительный MEMS-акселерометр разработки Sandia Labs

Зачастую, современные MEMS-гироскопы устроены идентично акселерометрам. Просто в них значения ускорений по осям пересчитываются в значения углов поворота – конструкция примерно та же, но на выходе другая величина.

Гироскоп L3G4200D производства ST Microelectronics используется в iPhone 4

Тот же STM L3G4200D, фотография с большим увеличением

Однако встречаются и гироскопы, устройство которых "заточено" именно под вращение. Такие MEMS – одни из красивейших.

Еще один гироскоп ST Microelectronics – LYPR540AH

Крупный план STM LYPR540AH. Толщина деталей этой ажурной конструкции – около 3 микрон!

Еще один MEMS-гироскоп

Помимо конденсаторных датчиков, существуют MEMS-акселерометры, использующие иные принципы. Например, датчики, основанные на пьезоэффекте. Вместо смещения обкладок конденсатора, в акселерометрах такого типа происходит давление грузика на пьезокристалл. Основной принцип тот же, что и в пьезозажигалках – под воздействием деформации пьезоэлемент вырабатывает ток. Из значения напряжения, зная параметры системы, можно найти силу, с которой грузик давит на кристалл – и, соответственно, рассчитать искомое ускорение.

Основной принцип работы акселерометров на пьезоэлементах

Есть и более экзотический тип MEMS-акселерометров – термальные датчики ускорения. В них в качестве основного объекта используется горячий пузырек воздуха. При движении пузырек отклоняется от центра системы, это отслеживается датчиками температуры. Чем дальше сместился пузырек – тем больше величина ускорения.

Двухосный термальный акслерометр

Менее популярный в статьях и обсуждениях, но гораздо более массовый тип MEMS-устройств – микроскопические микрофоны. Опять-таки, наиболее распространенными системами этого типа являются те, которые основаны на конденсаторном принципе.

Устроены они – проще некуда. Принципиально важных элементов в таком микрофоне всего два: это гибкая обкладка – мембрана, и более толстая, неподвижная обкладка. Под воздействием давления воздуха мембрана смещается, изменяется емкость между обкладками – при постоянном заряде изменяется напряжение. Эти данные пересчитываются в амплитуды и частоты звуковой волны.

Чтобы минимизировать влияние давления воздуха на неподвижную обкладку, эта обкладка перфорируется. Кроме того, под ней делается сравнительно большая ниша с обязательным вентиляционным отверстием. Идея в том, что единственным подвижным элементом в системе в идеале должна быть мембрана – и только она.

микроэлектромеханический микрофон под микроскопом. Диаметр мембраны чуть больше половины миллиметра

Как и в случае с акселерометрами, здесь может быть использован пьезоэффект - в этом случае под мембраной ставится пьезокристалл. Дальше – как и в случае пьезоакселерометров: давление воздуха передается мембраной на пьезоэлемент, под этим воздействием кристалл вырабатывает ток. Напряжение измеряется и переводится в амплитуду и частоту звука.

Самый миниатюрный MEMS-микрофон компании Akustica (площадь кристалла – 1 кв.мм) теряется рядом со своими более крупными родственниками

То, что годится для звука, подходит и для измерения давления в иных областях. Похожие на микрофоны MEMS-системы могут использоваться в качестве датчиков давления. Несложно догадаться, что применение такие сенсоры находят в уйме областей.

Но можно выделить одну область, которая является наиболее интересной и наиболее специфичной для датчиков давления, основанных на MEMS-технологии. Это медицина. Здесь размер действительно имеет значение. Если в какой-нибудь трубопровод вполне можно встроить «обычный», макроскопический датчик, то с кровеносным сосудом такой фокус, очевидно, не получится. Тут нужны очень и очень компактные решения.

Ультракомпактный и высокоточный датчики давления на фоне одноцентовой монеты (по размеру она примерно эквивалентна нынешним русским 50 копейкам)

Разумеется, в медицине востребованы не только датчики давления. Существует множество микроскопических биодатчиков, измеряющих массу разнообразных величин – от температуры до уровня глюкозы. Есть и более неожиданные устройства, вроде микроскопических систем подачи лекарств. И, разумеется, есть куча интереснейших прототипов, многие из которых в принципе не имеют аналогов среди макроустройств.

Прототип щипцов для микрохирургии глаза. Размеры головки щипцов – порядка 1,5х1,5 миллиметра. Толщина губ – несколько десятков микрон. Человеческий волос этими щипцами подцепить не получится – он для них слишком толстый

Что ж, разговор о MEMS-сенсорах мы на этом завершим. Впереди у нас еще более интересная и захватывающая тема: MEMS-актуаторы. Печатающие головки струйных принтеров, микрозеркальные матрицы, элементы оптико-волоконных сетей и многое другое. Обещаем: скучно не будет!

Другие статьи серии:

 
 
Если Вы заметили ошибку — выделите ее мышью и нажмите CTRL+ENTER.
window-new
Soft
Hard
Тренды 🔥
«Буду плакать слезами счастья»: датамайнеры Apex Legends заявили, что Titanfall 3 жива и выйдет в 2026 году 41 мин.
ИИ впервые стал студентом вуза — Венский университет прикладного искусства зачислил систему Flynn 49 мин.
Windows 11 скоро получит переработанный «Пуск», который можно будет настраивать под себя 59 мин.
Бенчмарк MLPerf показал, что ускорители AMD Instinct не уступают NVIDIA H200 2 ч.
Россия заняла четвёртое место по размеру аудитории в Kingdom Come: Deliverance 2, хотя игра в стране даже не продаётся 3 ч.
Трамп заявил, что сделка с TikTok близка к заключению, и тарифы могут пригодиться в переговорах с Китаем 5 ч.
Amazon добавила ИИ-функцию кратких обзоров книг Kindle, но предупредила о спойлерах 8 ч.
Инвесторы потребовали от Ubisoft пересмотреть условия сделки с Tencent и готовы добиваться своего через суд 13 ч.
Microsoft запустила собственный ИИ-поисковик Copilot Search 13 ч.
Спустя почти пять лет после дебюта на консолях The Last of Us Part II наконец вышла на ПК 14 ч.