реклама
Теги → галактика
Быстрый переход

Астроном из Австралии разгадал загадку эволюции галактик

Почти сто лет для классификации галактик астрономы пользуются так называемой последовательностью Хаббла. Она не идеальна, но в целом отражает представления земной науки об основных формах галактических структур. Однако эта диаграмма не показывает главного — эволюционной связи между теми или иными формами галактик. Восполнить этот пробел поможет наблюдение австралийского учёного, который сообщил, что открыл основные фазы эволюционного развития галактик.

 Пример слияния двух галактик. Источник изображения: International Gemini Observatory/NOIRLab/NSF/AURA

Пример слияния двух галактик. Источник изображения: International Gemini Observatory/NOIRLab/NSF/AURA

Согласно диаграмме Хаббла, галактики делятся на три большие категории: без спиралевидных рукавов, со спиралями и с перемычками. Отдельно можно выделить линзовидные галактики S0 с явной сферической центральной частью и диском из звёзд и вещества. Можно предположить, что эволюция и гравитация движут сферические галактики к линзовидным и, затем, к спиральным с перемычкой или без неё. Профессор Алистер Грэм (Alister Graham) из Swinburne Astronomy Online показал, что последовательность перехода из одной формы в другую может быть совершенно иной, о чём он подготовил статью для журнала Monthly Notices of the Royal Astronomical Society.

 Последовательность Хаббла. Источник изображения: Википедия

Последовательность Хаббла. Источник изображения: Википедия

В своём исследовании профессор Грэм проанализировал оптические изображения 100 близлежащих галактик, полученные с помощью космического телескопа «Хаббл», и инфракрасные изображения этих же галактик, полученные с помощью космического телескопа «Спитцер». Сравнивая их звёздную массу и массу центральной чёрной дыры, он обнаружил два типа линзовидных галактик — бедные пылью старые галактики и богатые пылью галактики — и у каждых из них свой эволюционный путь.

На основе сделанных наблюдений и, в частности, изучения сливающихся галактик (отдельный привет галактике Андромеда, которая находится на встречном курсе с Млечным Путём), учёный сделал вывод, что слияние двух спиральных галактик порождает богатые пылью линзовидные галактики. Это в некотором роде обратный отсчёт на последовательности Хаббла. Образованные таким способом богатые пылью линзовидные галактики имеют более крупные центральные области (сфероиды) и более крупные чёрные дыры в центре, чем спиральные галактики, из слияния которых они произошли.

Бедные пылью линзовидные галактики развиваются по-другому. Они медленно накапливают газ и вещество из окружающего пространства, и это может гравитационно возмущать их диск, вызывая образование спиральных рукавов и, подпитывая звёздообразование, в конечном итоге изменяет их структуру и форму (на изображении ниже это показано при переходе от жёлто-оранжевых кружков к голубым со спиралями).

 Пути эволюции галактик согланос новому исследованию. Источник изображения: Monthly Notices of the Royal Astronomical Society

Пути эволюции галактик согласно новому исследованию. Источник изображения: Monthly Notices of the Royal Astronomical Society

Такой могла быть наша галактика миллиарды лет назад — бедным захолустным образованием без спиральной структуры, пока не вобрала в себя вещество и ряд карликовых галактик, и не стала отличным спиралевидным домом для Земли и не только. Но вот встреча с Андромедой через 4–6 млрд лет может пройти бурно, хотя учёные уверены, что мы объединимся с ней в целом без последствий для большинства звёздного населения каждой из этих галактик.

Дальнейшее слияние пылевых линзовидных галактик ведёт к потере ими дисков и превращение в галактику эллиптической формы, а не наоборот, как было принято считать. Эллиптическая галактика быстро потеряет холодные газ и пыль и превратится в сферическую.

«Выживает сильнейший, — сказал учёный, — что в конечном итоге означает господство сфероидов над дисками». И добавил: «Теперь астрономия имеет новую анатомическую последовательность и, наконец, эволюционную последовательность, в которой видно, что видообразование галактик происходит в результате неизбежного "бракосочетания" галактик, предписанного гравитацией».

«Хаббл» запечатлел неправильную галактику, в снимок которой ворвалась звёздная «фотобомба»

Космическая обсерватория «Хаббл» получила самый детальный снимок неправильной или нерегулярной галактики ARP 263. Но ярче всего на снимке позирует «звёздная фотобомба», как назвали её в NASA — это яркая и совершенно посторонняя звезда. Но именно она оживила фотографию, как приглашённая на вечеринку знаменитость.

 Нажмите, чтобы увеличить. Источник изображения: ESA/Hubble, NASA

Нажмите, чтобы увеличить. Источник изображения: ESA/Hubble, NASA

Пекулярные или нерегулярные галактики названы так по причине отсутствия у них явно выраженной галактической структуры — спиральных или эллиптической формы рукавов. Галактика ARP 263 или NGC 3239 выглядит как поле звёзд с отдельными очагами звёздообразования. По мнению учёных, такая форма могла образоваться при столкновении двух галактик. Эстафету наблюдений «Хаббла» за галактикой подхватит «Джеймс Уэбб» и, возможно, раскроет её секрет.

«Фотобомба» на переднем плане — это звезда BD+17 2217, которая к нам намного ближе, чем галактика ARP 263, которая удалена от нас на 25 млн световых лет. У звезды чётко видны восемь лучей — это особенности оптики «Хаббла». При прохождении света через оптическую систему этого телескопа вокруг ярких объектов образуется четыре дифракционных шипа. На снимке их восемь по той причине, что телескоп наблюдал галактику ARP 263 дважды в ходе двух отдельных обзоров, каждый из которых проводился под другим углом. Совмещение двух изображений дало такую картину. Теперь ждём снимка ARP 263, сделанного «Уэббом».

NASA опубликовало снимок спиральной галактики UGC 11860, пережившей недавний взрыв сверхновой

NASA опубликовало фото отдалённой галактики, сделанное космическим телескопом «Хаббл» — она пережила относительно недавний взрыв сверхновой. Галактика UGC 11860 находится в 184 млн световых лет от Земли в созвездии Пегаса.

 Источник изображения: NASA

Источник изображения: NASA

Речь идёт о спиральной галактике, похожей на наш собственный Млечный путь — на снимке отчётливо заметны рукава, исходящие из яркого ядра галактики и свивающиеся в спиралеобразную структуру.

Судя по фото, опубликованному NASA, UGC 11860 находится в довольно стабильном состоянии, и как сообщает Space.com, «спокойно плывёт» в космосе. Тем не менее, по данным космического агентства, в недавнем прошлом она пережила «невообразимо мощный звёздный взрыв».

Когда жизнь массивной звезды подходит к концу, она погибает в «эффектном» взрыве, превращаясь в сверхновую. На этом этапе звезда становится чрезвычайно яркой, выбрасывая в окружающий космос огромное количество материи и формирует расширяющиеся оболочки из газа и пыли, по остаткам которых не в последнюю очередь и можно отследить недавний взрыв.

Как заявляют в NASA, высокоэнергетические процессы при взрыве отвечают за формирование разнообразных химических элементов, от кремния до никеля. Это, в частности, позволяет многое понять о происхождении многих химических элементов на Земле.

Наблюдения UGC 11860 проводились ещё в 2014 году с использованием камеры «Хаббла» Wide Field Camera 3, но снимок опубликован NASA только теперь. Данные с «Хаббла» позволили астрономам подробно изучить последствия звёздного взрыва и сохранившиеся в галактике остатки сверхновой после него.

«Хаббл» показал становление «космического монстра» — слияние двух скоплений галактик

Космический телескоп Хаббл запечатлел потрясающее массовое скопление галактик eMACS J1353.7+4329. Это скопление находится примерно в восьми миллиардах световых лет от Земли в созвездии Гончих Псов. Для сравнения, самый удаленный объект, когда-либо наблюдаемый человечеством, находится на расстоянии 13,5 миллиарда световых лет от Земли.

 Источник изображений: ESA/Hubble & NASA, H. Ebeling

Источник изображений: ESA/Hubble & NASA, H. Ebeling

Это скопление галактик является «монстром в процессе становления» и состоит, по меньшей мере, из двух эллиптических скоплений галактик, которые находятся в процессе слияния воедино, как указывается в заявлении Европейского космического агентства.

На новом фото с «Хаббла» кластер галактик виден как плотное скопление овальных форм. У каждой галактики есть светящаяся оранжевая аура вокруг яркого ядра. Множество других галактик разбросаны по всему изображению, включая яркую звезду запечатлена с четырьмя характерными дифракционными лучами.

Космический монстр eMACS J1353.7+4329 из скоплений галактик действует как гравитационная линза, позволяя исследователям изучать ранние галактики более подробно, чем они могли бы сделать это ранее. Гравитационное линзирование происходит, когда массивные объекты в переднем плане, такие как сливающиеся галактики, искривляют структуру пространства и времени таким образом, что свет от более дальних объектов увеличивается или искажается.

«Небесное тело, такое как скопление галактик, достаточно массивно, чтобы искажать пространство и время, в результате чего путь света вокруг объекта видно, как будто он искривлен огромным объективом, — заявили представители Европейского космического агентства. — Первые намеки на гравитационное линзирование уже видны на этом изображении в виде ярких дуг, которые переплетаются с множеством галактик в eMACS J1353.7+4329».

На изображении можно видеть эффекты гравитационного линзирования справа от самой большой центральной галактики, которая растянула фоновую галактику, вызвав появление двух соединенных тонких дуг.

Недавние наблюдения eMACS J1353.7+4329 были сделаны в нескольких диапазонах длин волн с использованием камерой широкого поля и камерой ACS телескопа «Хаббл». Эти данные были собраны в рамках инициативы под названием Monsters in the Making, которая охватывает пять исключительных скоплений галактик. Наблюдения «Хаббла» за этими огромными гравитационными линзами легли в основу дальнейшего изучения таких объектов с использованием космического телескопа «Джеймс Уэбб» NASA.

Видео: пролёт мимо 5000 галактик до «Мэйси» — древнейшей из известных галактик

Накануне первой годовщины первого научного обзора неба космической обсерваторией «Джеймс Уэбб» учёные представили трёхмерную визуализацию примерно 5000 галактик, наблюдения которых проведены с помощью этой космической обсерватории. Визуализация являет собой виртуальный полёт сквозь Вселенную до самой древней из обнаруженных галактик «Мэйси», которую до «Уэбба» не видел никто на Земле.

 Источник изображения: Pixabay

Источник изображения: Pixabay

В ролик попали галактики из области неба, названной Расширенная полоса Грота, которая находится между созвездиями Волопаса и Большой Медведицы. Телескоп «Хаббл» наблюдал этот регион около 20 лет назад и обнаружил там порядка 100 тыс. галактик. Можно было бы сказать, что «Уэбб» переоткрыл их, но это не совсем так. Самые дальние галактики на снимках «Хаббла» были просто точками, а «Уэбб» позволяет увидеть множество деталей на изображениях, за что надо благодарить его чувствительность к инфракрасному диапазону, а также новый телескоп провёл спектральный анализ света звёзд. Можно сказать, что «Хаббл» увидел лес, а «Уэбб» рассказал, что там растёт.

Более того, визуализация завершается изображением галактики «Мэйси» (CEERSJ141946.35+525632.8, Maisies). Эта галактика получила собственное имя от одной из учёных проекта, которая назвала её в честь своей дочери. Возможно это всё ещё кандидат в самые ранние галактики. Было ли подтверждено её красное смещение на уровне z14,3 или нет, мы точно сказать не можем. В пресс-релизе NASA её называют самой ранней галактикой, но научной работы с подтверждением этого в виде спектрального анализа, похоже, ещё не было.

Если «Мэйси» — это действительно то, чем она кажется, то на снимке «Уэбба» она находится во времена, когда Вселенной было всего 286 млн лет или 13,4 млрд лет назад. Это первая галактика, которую до работы «Уэбба» люди не видели.

«Эта обсерватория просто открывает для нас весь этот период времени для изучения, — сказала Ребекка Ларсон (Rebecca Larson) из Рочестерского технологического института в Рочестере (штат Нью-Йорк), одна из учёных проекта. — Раньше мы не могли изучать галактики, подобные галактике "Мэйси", потому что не могли их увидеть. Теперь же мы не только можем обнаружить их на снимках, но и узнать, из чего они состоят и отличаются ли они от галактик, которые мы видим вблизи».

«Джеймс Уэбб» показал яркий результат столкновения двух галактик 500 млн лет назад

Космический телескоп «Джеймс Уэбб» (JWST) показал, насколько обманчивой может казаться космическая безмятежность: спокойная на вид галактика NGC 3256 образовалась в результате произошедшего 500 млн лет назад столкновения двух других.

 Источник изображения: nasa.org

Источник изображения: nasa.org

Галактика NGC 3256 находится на расстоянии около 120 млн световых лет от Земли и относится к сверхскоплению Гидры-Центавра. Намёками на бурное прошлое объекта являются яркие длинные рукава из пыли и звёзд, простирающиеся из основного тела галактики. Изучение подобных космических столкновений может поведать учёным о механизмах роста при слиянии галактик и находящихся в их ядрах сверхмассивных чёрных дыр, достигающих миллионов и миллиардов масс Солнца.

Слияние, в результате которого возникла NGC 3256, породило интенсивный всплеск звездообразования. При подобных процессах уже сформировавшиеся звёзды зачастую избегают столкновений друг с другом — уж слишком велики пустоты между ними. А вот газопылевые облака объединяются в ещё более плотные образования, и здесь начинают рождаться новые звёзды. При этом процессе возникает интенсивное инфракрасное свечение, и предназначенный для работы в данном диапазоне «Джеймс Уэбб» оказывается наиболее подходящим инструментом для наблюдения за подобными событиями.

Области интенсивного звездообразования обозначены наиболее яркими оранжево-красными участками галактических рукавов. На снимке NGC 3256 также можно различить целые звёздные нити, вырванные из своих родных галактик под действием гравитационных сил. Изображение было получено установленными на телескоп «Джеймс Уэбб» камерами ближнего (NIRCam) и среднего (MIRI) инфракрасных диапазонов.

«Хаббл» запечатлел близкую к нам неправильную галактику

Космический телескоп «Хаббл» (Hubble) помог получить чрезвычайно детальное изображение галактики ESO 174-1, расположенной на расстоянии 11 млн световых лет от нас — в галактических масштабах она является нашим близким соседом.

 Источник изображения: nasa.gov

Источник изображения: nasa.gov

На снимке ESO 174-1 напоминает тонкое облако молочно-белого газа. Сквозь него можно разглядеть отдельные звёзды, а внутри хорошо различимо тёмное газопылевое «щупальце». Одним из важнейших различий ESO 174-1 и Млечного Пути является их форма: наша галактика состоит из центральной части (балджа) с высокой концентрацией звёзд и спиральных рукавов, тогда как ESO 174-1 значительно менее упорядочена. Она представляет собой пример неправильной галактики — такие широко варьируются по размерам и форме. Бывают карликовые галактики с массой в 100 млн раз больше солнечной, но есть и крупные с массой около 10 млрд солнечных. Неправильные галактики могут иметь формы сплющенной сферы, вытянутую или кольцеобразную форму.

Учёные предполагают, что свои формы они приобретают в результате взаимодействия с более массивными галактиками. Например, при сближении двух спиральных галактик одна может поглотить часть вещества другой и исказить её вид. Неправильная галактика может получиться и при слиянии двух спиралевидных. Есть также гипотеза, что со временем спиральная галактика может эволюционировать в эллиптическую.

Снимок ESO 174-1 был получен в рамках программы изучения соседних с Млечным Путём галактик — она занимает 2–3 % рабочего времени «Хаббла» между другими наблюдениями. Это оптимизация работы космического телескопа: последовательные наблюдения за объектами в противоположных частях неба были бы неэффективными. Учёные надеются, что программа поможет выявить самые яркие звезды известных галактик в радиусе 32 млн световых лет.

«Джеймс Уэбб» засёк зарождение космической паутины — это происходило через 830 млн лет после Большого взрыва

Расположение и перемещение галактик во Вселенной отнюдь не случайно. Помимо явных скоплений галактики связаны нитеподобными структурами. По всей видимости, в основе «нитей» лежит тёмная материя, которая постепенно собирала вокруг себя обычное вещество. Вначале это была слабая космическая паутина, но со временем она становилась всё более прочной и заметной. «Джеймс Уэбб» смог проследить начало формирования призрачных нитей, связывающих галактики в огромные структуры.

 Источник изображения: NASA, ESA, CSA

Кругами отмечены связанные космической нитью галактики, а объединяющий квазар находится в центре трёх кругов справа. Источник изображения: NASA, ESA, CSA

Центрами «сборки» космической паутины считаются сверхмассивные чёрные дыры или активные ядра галактик, которые также называют квазарами. Наблюдение за одним квазаром (J0305-3150) в ранней Вселенной в эпоху реионизации позволило выявить 10 связанных с ним галактик, соединённых космической «нитью» длиной 3 млн световых лет.

«Я был удивлен тем, насколько длинной и узкой является эта нить, — сказал участник исследования Сяохуи Фань (Xiaohui Fan) из Университета Аризоны в Тусоне. — Я ожидал найти что-то, но не ожидал такой длинной, отчётливо тонкой структуры». Руководитель проекта Фейдж Ванг (Feige Wang) из того же университета добавил: «Это одна из самых ранних связанная с далёким квазаром нитевидных структур, которые люди когда-либо находили».

Со временем эта нить превратится в громадное галактическое скопление, и оно где-то есть, а изучение космической паутины на ранних этапах даёт возможность проследить за эволюцией таких процессов.

Проделанная учёными работа входит в рамки проекта по изучению самых первых чёрных дыр. Всего в рамках программы ASPIRE (A SPectroscopic survey of biased halos In the Reionization Era) будут наблюдаться 25 квазаров, существовавших в течение первого миллиарда лет после Большого взрыва. Программа призвана решить множество загадок, связанных с эволюцией чёрных дыр и одна из них — это слишком быстрое их появление в виде сверхмассивных объектов, на что, в теории, в те времена не хватило бы и времени, и материи.

В центре нашей галактики обнаружены источники высокоэнергичных космических лучей — на них указали нейтрино

Для астрофизики настали чудесные дни. Вчера было сообщено о революционном открытии фонового шума во Вселенной, создаваемого гравитационными волнами от слияния сверхмассивных чёрных дыр, а сегодня учёные доложили об открытии нового способа изучения космоса с помощью нейтрино. Впервые с помощью нейтрино удалось определить примерные источники высокоэнергичных космических лучей и это даёт новый взгляд на Вселенную.

 Источник изображения: Pixabay

Источник изображения: Pixabay

Учёные давно ищут источники высокоэнергичных частиц, которые прилетают из космоса на Землю. Их энергии таковы, что они должны рождаться вне пределов нашей галактики, чтобы они смогли преодолеть местные магнитные поля и вырваться в межзвёздное пространство. К сожалению, те же магнитные поля решительно изменяют траектории заряжённых частиц (протонов и заряженных атомных ядер) и это не позволяет отследить их до источника.

Другое дело нейтрино. Они почти не взаимодействуют с веществом и магнитными полями, поскольку имеют ничтожную массу и не имеют заряда. Поэтому нейтрино движутся по прямой траектории и могут указать на источник своего происхождения. Этим источником могут быть следы, которые высокоэнергичные частицы оставляют на своём пути, когда они врезаются в пыль и газ на своей траектории. Одним из продуктов таких столкновений является пара кварк-антикварк, известная как пион. Распад заряженных пионов, в свою очередь, порождает высокоэнергетическое электронное нейтрино. Проследив за траекторией этих нейтрино можно выйти на источник высокоэнергичных космических частиц.

Но есть ещё одна проблема — отсеять неуловимые высокоэнергетическое нейтрино из фона местных и таких же слабо регистрируемых нейтрино. В частности, необходимо было подавить фон атмосферных нейтрино (мюонных нейтрино). Вручную и с помощью обычных алгоритмов это не удавалось сделать много лет, пока на помощь не пришло машинное обучение. С помощью обучающихся алгоритмов учёные смогли заново проанализировать 10 лет наблюдений за нейтрино на установке IceCube во льдах Антарктиды.

 Источник изображения: IceCube Collaboration

Вид на нашу галактику в разных диапазонах. Нижнее изображение сформировано из данных по нейтрино. Источник изображения: IceCube Collaboration

Новый метод анализа позволил включить в набор данных в 20 раз больше событий с лучшей информацией о направлении, и это дало ошеломляющий результат. Учёным открылась новая карта Вселенной и, в частности, новый взгляд на нашу галактику Млечный Путь. Со статистической значимостью около 4,5 сигма (чуть-чуть не дотянули до пятёрки, что означало бы безоговорочное признание в научной среде открытия) были указаны источники высокоэнергичных нейтрино в центре нашей галактики, а не где-то там в невообразимой дали. Это даёт намёк на зарождение частиц с колоссальной энергией в центре нашей галактики, а не где-то за её пределами. В центре Млечного Пути происходит что-то невообразимое по выбросам энергии, и этот процесс оказалось возможным рассмотреть и, в перспективе, изучить.

Звёзды из вторсырья: найдена галактика, которая создаёт светила из того, что выбросила другая галактика

На Земле все привыкли к переработке отходов, однако никто не представлял, что такое может происходить в космосе. Международная группа учёных под руководством астрономов Шиву Чжан (Shiwu Zhang) и Чжэн Цай (Zheng Cai) из Университета Цинхуа в Китае нашла доказательства того, что огромная галактика внутри ещё большей туманности под названием MAMMOTH-1 собирает материал из пространства вокруг неё, чтобы породить новые звезды.

 Схема образования новых звёзд; Источник изображения: NASA

Источник изображения: NASA

Материал туманности содержит элементы, образованные вспышками сверхновых звёзд, которые, как считается, произошли внутри галактик. Это означает, что галактика, которую исследовательская группа называет G-2, в настоящее время формирует звезды из материала, который ранее был выброшен в межгалактическое пространство либо самой галактикой, либо другой близлежащей. «Моделирование показало, что рециркуляция газа — повторное образование газа, который ранее был выброшен из галактики — может поддерживать звёздообразование в ранней Вселенной», — говорится в исследовании, опубликованном в прошлом месяце в журнале Science.

В туманности MAMMOTH-1 в изобилии присутствует сырье для звёздообразования, а наблюдения с телескопов «Subaru» и «Keck II» показали, что из туманности в одну из галактик внутри неё проистекают три газообразных потока. MAMMOTH-1 — это особенно огромная туманность, которая оправдывает своё название. Потоки газа из этой туманности простираются на поразительные 100 килопарсек (325 000 световых лет). Эти потоки могут обеспечить любую галактику всем необходимым для рождения нового поколения звёзд.

Исследовательская группа создала кинематические модели галактик и туманности, чтобы увидеть, как именно движутся газообразные потоки. Оказалось, что потоки закручиваются по спирали внутрь галактики, что, по их мнению, является ещё одним доказательством наличия огромного количества материала, который может быть переработан в новые звезды. Наблюдения на телескопах Subaru и Keck II показали, что эти потоки светились эмиссионными линиями, указывающими на присутствие водорода и гелия, чего и следовало ожидать. Но в них также присутствовало значительное количество углерода. Присутствие углерода показывает, что облако содержит более тяжёлые элементы, которые, скорее всего, произошли от давно погибших звёзд.

В ходе наблюдений за MAMMOTH-1 было обнаружено ещё кое-что: два потока газа, направляющиеся к притягивающей их галактике, исходят из одного и того же квазара. Квазары образуются, когда сверхмассивные черные дыры в центре галактик поглощают достаточно материала, чтобы испустить струи вещества и радиоактивное излучение. Эти струи могут выбрасывать материал из галактики целиком.

Исследователи определили, что этот квазар, скорее всего, расположен не в той же галактике, которая притягивает материал. Таким образом, похоже, что это случай, когда одна галактика перерабатывает материал, выброшенный другой.

Телескоп «Хаббл» запечатлел галактику-медузу в 700 млн световых лет от Земли

Космический телескоп «Хаббл» (Hubble) прислал снимок галактики-медузы JO206, которая находится на расстоянии 700 млн световых лет от Земли и наблюдается в созвездии Водолея. Галактики-медузы отличают так называемые щупальца — длинные газовые хвосты, в которых происходит звездообразование.

 Источник изображения: nasa.gov

Источник изображения: nasa.gov

Спиральная галактика повёрнута «лицом» к Земле и «Хабблу», поэтому на изображении с космического телескопа она предстала в виде цветного диска, окружённого туманным облаком вещества. Потоки этого вещества действительно напоминают щупальца медузы. Галактики-медузы наподобие JO206 встречаются в скоплениях и характеризуются газовыми хвостами — веществом, выбрасываемым из галактик по ходу их движения.

Эти щупальца образуются в результате взаимодействия между галактиками и средой внутри скопления — разреженной перегретой плазмой. Продвигаясь в области скопления, галактики врезаются в его внутреннюю среду, а свободный газ этих галактик вытягивается в длинные хвосты звездообразования. Это даёт астрономам уникальную возможность изучать звездообразование в экстремальных условиях вдали от основного диска.

Что примечательно, учёным не удалось обнаружить значительных различий между процессами формирования звёзд в дисках и щупальцах галактик-медуз. Из этого исследователи делают вывод, что окружающая молодые звезды среда оказывает на их формирование лишь незначительное влияние.

«Джеймс Уээб» сфотографировал древние галактики в пузырях

После Большого взрыва газ в родившейся Вселенной был настолько горячий и плотный, что поглощал едва ли не все электромагнитные излучения. Тёмные века закончились с появлением первых звёзд, свет которых запустил повторную ионизацию газа в пространстве, что в итоге сделало Вселенную прозрачной для всех диапазонов наблюдения. Но это всё в теории. Как обстояли дела на практике, учёные могли только догадываться. Но «Джеймс Уэбб» изменил правила игры.

 Источник изображения: NASA, ESA, CSA

Галактики из ранней Вселенной, окружённые «пузырями» из прозрачного газа. Источник изображения: NASA, ESA, CSA

Высокий уровень чувствительности в инфракрасном диапазоне помог космической обсерватории «Джеймс Уэбб» заглянуть так далеко в раннюю Вселенную, как никогда раньше. Выбранное астрономами время наблюдения лежало на рубеже 900 млн лет после Большого взрыва. Это фактически на границе завершения эпохи реионизации, что позволяло увидеть картину распределения прозрачности газа в большом масштабе.

Для нас как для наблюдателей в это время вокруг галактик образовывалось что-то в виде огромных пузырей прозрачного газа. «Пузыри» были уже достаточно большими, чтобы увидеть их границы, и они ещё не начали сливаться друг с другом у соседних галактик. Это произойдёт намного позже — через сотни миллионов лет, и тогда Вселенная станет практически прозрачная для наблюдения во всех направлениях.

До наблюдений «Уэбба» эти пузыри эпохи реионизации никто воочию не наблюдал, но чтобы их обнаружить потребовались наблюдения целого ряда других телескопов. Более того, просто так «пузыри» были бы невидны. Потребовалось в некотором роде везение. Там далеко в ранней Вселенной ещё до появления искомых галактик обнаружился квазар. Кстати, «Уэбб» подтвердил, что это самый яркий квазар из обнаруженных в ранней Вселенной — масса чёрной дыры в центре этой активной галактики в 10 млрд раз превышает массу Солнца. Этот квазар как фонарик подсветил все галактики от него до нас, высветив прозрачные пузыри и снизив интенсивность свечения в непрозрачных областях.

 Пример эволюции (реоинизации) газа под воздействием активной «жизнедеятельности» галактик в ранней Вселенной

Пример эволюции (реионизации) газа под воздействием активной «жизнедеятельности» галактик в ранней Вселенной

Картина получилась настолько интересной, что проводившие наблюдения астрономы поспешили опубликовать данные до полного разбора всей информации. В направлении квазара «Уэбб» сделал шесть снимков глубокого поля и сразу выхватил 117 галактик, разгоняющих «вселенский туман». Представленные сегодня данные опираются на анализ только одного снимка, а пять ещё в обработке. Но даже первый результат не позволил учёным сдержать себя, ведь такого ещё никто не видел.

«Джеймс Уэбб» обнаружил сложную органику в очень ранней Вселенной, и она как «третьеклассник на пенсии»

Обнаружить сложные органические молекулы всего через 1,5 млрд лет после Большого взрыва — «это как третьекласснику выйти на пенсию», прокомментировали событие учёные. Обнаружены не простые молекулы типа воды или углекислого газа, а найдены сложные соединения из сотен и тысяч атомов. На таком этапе развития Вселенной этого мало кто ожидал. Очевидно, близится время глубокого пересмотра наших теорий об эволюции звёзд, галактик и самой Вселенной.

 Синий объект — это галактическое скопление, оранжевый — далёкая галактика сквозь гравитационную линзу.Источник изображения:  J. Spilker / S. Doyle, NASA, ESA, CSA

Синий объект — это галактическое скопление, оранжевый — далёкая галактика, наблюдаемая сквозь гравитационную линзу. Источник изображения: J. Spilker / S. Doyle, NASA, ESA, CSA

Сделать открытие помогли возможности нового космического телескопа «Джеймс Уэбб» и хорошо известный эффект гравитационного линзирования. Гравитационная линза была создана удалённым от нас на 3 млрд световых лет массивным скоплением галактик. Гравитация этого скопления настолько сильно исказила вокруг себя пространство-время, что фоновые объекты далеко за ним появились вокруг него в сильно увеличенном виде.

Так удачно совпало, что почти точно за скоплением в 12 млрд световых лет от нас находилась одиночная галактика SPT0418-47. Именно её изображение увеличила гравитационная линза от скопления. На снимке далёкая галактика превратилась в ореол, сияющий вокруг скопления. Простая математика позволяет вернуть галактике первоначальный вид и воссоздать её реальный образ.

Спектральные приборы «Уэбба» позволили выделить в свете галактики SPT0418-47 сложные органические молекулы, которые на Земле обычно находятся в нефти. Обнаружить подобное в открытом космосе всего через 1,5 млрд лет после Большого взрыва — это было удивительно. Это указывает на то, что химические преобразования во Вселенной шли гораздо быстрее, чем это себе представляла земная наука. На тот момент Вселенная прошла только 10 % своего развития, а органики там не меньше чем в нашей галактике. Подобные вещества должны были быть в ней в следовых количествах и недоступны для определения земными приборами. Но «Уэбб» смог это сделать и ещё на шаг приблизил нас к пониманию эволюционных процессов во Вселенной.

 Принцип работы гравитационной линзы

Принцип работы гравитационной линзы

Новые наблюдения «Уэбба» обещают обнаружить сложные органические вещества в других галактиках ранней Вселенной и, возможно, на ещё более ранних этапах её развития. К сожалению, прибор телескопа для таких открытий начал деградировать. Ранее мы сообщали, что спектрометр среднего разрешения (MRS) инструмента MIRI на самых длинных волнах начал снижать пропускную способность (количество света, которое регистрируется датчиками). Если команда телескопа не найдёт решения проблемы, подобные наблюдения после 2024 года станут невозможными.

«Джеймс Уэбб» обнаружил необычную чёрную дыру в древней галактике — она впятеро массивнее, чем должна

Астрономы использовали беспрецедентные возможности космического телескопа «Джеймс Уэбб» для обнаружения настоящего монстра звёздного мира. Выявленная чёрная дыра оказалась столь беспрецедентно массивной, что, вероятно, остановила процесс образования новых звёзд в древней галактике GS-9209.

"Джеймс Уэбб", иллюстрация. Источник изображения: NASA

Команда учёных из Эдинбургского университета использовала «Джеймс Уэбб», чтобы изучить одну из самых отдалённых галактик — GS-9209 находится в 25 млрд световых лет от Земли. В ходе исследования, результаты которого опубликованы в журнале Nature, выяснилось, что галактика интересна не только этим. По данным учёных, речь идёт о т.н. «массивной покоящейся галактике», всего через 800 млн лет после Большого взрыва сформировавшей столько же звёзд, сколько имеется в Млечном пути. Хотя GS-9209 имеет примерно столько же звёзд с общей массой, равной приблизительно 40 млрд масс Солнца, размером галактика в 10 раз меньше нашей.

«Джеймс Уэбб» помог учёным выяснить, что главный виновник того, что образование звёзд в чужой галактике прекратилось, — сверхмассивная чёрная дыра в центре GS-9209, которая в 5 раз массивнее, чем должна была бы быть в соответствии с современными научными представлениями — исходя из числа светил в галактике.

По словам учёных, такая чёрная дыра оказалась «большим сюрпризом» и ещё одним подтверждением одной из теорий, согласно которой сверхмассивные чёрные дыры могут мешать появлению новых звёзд. В процессе аккреции они интенсивно испускают высокоэнергетическое излучение, которое нагревает газ и буквально «выталкивает» его из галактик, в результате чего новые звёзды не возникают из-за нехватки основного «строительного материала».

Тот факт, что данная чёрная дыра столь массивна, может означать, по мнению учёных, что она была «очень активна в прошлом», поглощая огромное количество газа и пыли и, вероятно, светилась как квазар, а вся энергия, выделенная в процессе аккреции, вероятно, серьёзно повлияла на процесс звездообразования во всей галактике, не давая газу превратиться в новые звёзды.

«Джеймс Уэбб» чрезвычайно эффективен не только на длинных, но и на весьма коротких дистанциях. Относительно недавно он обнаружил гигантский ледяной гейзер на спутнике Сатурна — Энцеладе, что поможет учёным сделать немало открытий, связанных с этим небольшим, покрытым льдом миром.

Выдуваемые из центра Млечного Пути гигантские газовые пузыри оказались сложнее, чем думали учёные

Международная группа учёных исследовала так называемые «пузыри eRosita» — газовые образования размером 36 тыс. световых лет, которые вырываются из центральной части нашей галактики Млечный Путь — и обнаружила их неизвестные до настоящего момента свойства.

 Источник изображения: roscosmos.ru

Источник изображения: roscosmos.ru

Эти пузыри, названные в честь рентгеновского телескопа eRosita, с помощью которого их открыли — не единственные, что произрастают из диска нашей галактики. Есть также «пузыри Ферми», открытые при помощи одноимённого гамма-телескопа, но они, несмотря на схожую форму, имеют в два раза меньшие размеры, и менее энергетичны. Эти структуры простираются сквозь газ, окружающий нашу галактику. Астрономы надеются, что изучение этих структур поможет раскрыть новые механизмы звездообразования и объяснить, как собираются вместе галактики вроде нашей.

Открытия были сделаны на основе наблюдений, которые производились с 2005 по 2014 гг. Ранее считалось, что пузыри нагреваются ударными волнами газа, которые выбрасываются из Млечного Пути, но исследователи установили, что температура газа внутри пузырей не отличается от температуры газа вне них. Яркость же им придаёт не температура, а высокая плотность вещества.

Астрономы до сих пор не уверены в том, как появились галактические пузыри: одна из гипотез предполагает, что они «выдуваются» в результате активности расположенной в центре галактики сверхмассивной чёрной дыры Стрелец А*; но присутствие в них некоторых элементов указывает, что причиной скорее послужило интенсивное звездообразование в центре Млечного Пути. Дополнительную информацию о «пузырях eRosita» учёные надеются получить при помощи наблюдений в рамках новых космических миссий.

window-new
Soft
Hard
Тренды 🔥
Новая статья: Верные спутники: 20+ полезных Telegram-ботов для путешественников 4 ч.
Итоги Golden Joystick Awards 2024 — Final Fantasy VII Rebirth и Helldivers 2 забрали больше всех наград, а Black Myth: Wukong стала игрой года 6 ч.
В программу сохранения классических игр от GOG вошли S.T.A.L.K.E.R. Shadow of Chernobyl и Call of Pripyat, а Clear Sky — на подходе 7 ч.
Star Wars Outlaws вышла в Steam с крупным обновлением и дополнением про Лэндо Калриссиана 8 ч.
Рекордная скидка и PvP-режим Versus обернулись для Warhammer: Vermintide 2 полумиллионом новых игроков за неделю 9 ч.
Новый трейлер раскрыл дату выхода Mandragora — метроидвании с элементами Dark Souls и нелинейной историей от соавтора Vampire: The Masquerade — Bloodlines 10 ч.
В Японии порекомендовали добавить в завещания свои логины и пароли 12 ч.
Обновления Windows 11 больше не будут перезагружать ПК, но обычных пользователей это не касается 12 ч.
VK похвасталась успехами «VK Видео» на фоне замедления YouTube 14 ч.
GTA наоборот: полицейская песочница The Precinct с «дозой нуара 80-х» не выйдет в 2024 году 16 ч.
Nvidia предупредила о возможном дефиците игровых решений в четвёртом квартале 29 мин.
Представлен внешний SSD SanDisk Extreme на 8 Тбайт за $800 и скоростной SanDisk Extreme PRO с USB4 5 ч.
Представлен безбуферный SSD WD_Black SN7100 со скоростью до 7250 Мбайт/с и внешний SSD WD_Black C50 для Xbox 5 ч.
Новая статья: Обзор ноутбука ASUS Zenbook S 16 (UM5606W): Ryzen AI в естественной среде 6 ч.
Redmi показала флагманский смартфон K80 Pro и объявила дату его премьеры 8 ч.
Астрономы впервые сфотографировали умирающую звезду за пределами нашей галактики — она выглядит не так, как ожидалось 11 ч.
Представлена технология охлаждения чипов светом — секретная и только по предварительной записи 11 ч.
Японская Hokkaido Electric Power намерена перезапустить ядерный реактор для удовлетворения потребности ЦОД в энергии 11 ч.
Грузовик «Прогресс МС-29» улетел к МКС с новогодними подарками и мандаринами для космонавтов 12 ч.
Meta планирует построить за $5 млрд кампус ЦОД в Луизиане 12 ч.