Опрос
|
реклама
Быстрый переход
Учёные с помощью шести телескопов зафиксировали столкновение трёх скоплений галактик Abell 2256
31.01.2023 [16:44],
Павел Котов
Международная группа учёных зафиксировала и провела анализ столкновения как минимум трёх скоплений галактик. В результате сформировалось гигантское скопление, которому присвоили название Abell 2256 — оно также действует как один из крупнейших во Вселенной ускорителей частиц. Скопление галактик Abell 2256 находится на расстоянии 780 млн световых лет от Земли и в поперечнике занимает около 100–200 килопарсек. Его изображение было получено объединением данных нескольких обсерваторий: данные с космических рентгеновских телескопов Chandra (США) и XMM-Newton (Европа) обозначили синим цветом; снимки радиотелескопов GMRT (Индия), LOFAR (Нидерланды) и VLA (США) — красным; снимки, полученные обсерваторией Pan-STARRS (США) в видимом и инфракрасном диапазонах — белым и бледно-жёлтым. Изучающие этот объект астрономы попытались выяснить, что привело к возникновению этой сложной структуры, и каждая обсерватория раскрыла им свою часть общей картины. Скопления галактик — одни из наиболее крупных объектов Вселенной. Они содержат сотни и даже тысячи галактик, а также гигантские объёмы перегретого газа, температура которого составляет миллионы градусов — зафиксировать его присутствие можно только в рентгеновском диапазоне. Радиоизлучение производится другими источниками. Во-первых, это потоки частиц, испускаемых тонкими струями из сверхмассивных чёрных дыр — галактических ядер. Эти потоки либо формируют тонкие лучи (обозначены как C и I), либо проходят через газовые облака, в которых замедляются и формируют нити либо более сложные формы (A, B и F). Ещё одним источником радиоволн являются так называемые реликты, сформированные ударными волнами, которые ускорили частицы в газовых облаках. Наконец, вблизи центра столкновения расположен ещё один объект — «ореол» радиоизлучения. На общей картине он перекрыт рентгеновским излучением газового облака и является более тусклым, поэтому исследователи опубликовали отдельный снимок радиочастотного диапазона. Учёные предполагают, что этот объект сформировался из-за вторичного ускорения частиц при резких перепадах температуры и плотности газового облака, образуемых при столкновении галактических скоплений. Впрочем, некоторых особенностей данных радиочастотного диапазона эта модель не объясняет, поэтому учёные продолжают исследовать Abell 2256. Астрономы зафиксировали радиосигнал, который летел к нам из далекого космоса 8,8 млрд лет
20.01.2023 [18:56],
Павел Котов
Расположенная в Индии обсерватория Giant Metrewave Radio Telescope (GMRT) уловила сигнал с длиной волны в диапазоне 21 см, известной также как «радиолиния нейтрального водорода», от галактики, находящейся на рекордном расстоянии от Земли — 8,8 млрд световых лет. Галактика, обозначенная как SDSSJ0826+5630, произвела этот сигнал 8,8 млрд лет назад. Он позволил оценить содержание газа в галактике и выяснить, что её масса двукратно превышает массу видимых звёзд в ней. Галактики производят электромагнитное излучение в широком диапазоне, однако сигналы радиолинии нейтрального водорода пока удавалось принимать только от близлежащих, а следовательно, более молодых источников. Трудность приёма сигналов на этих длинах волн от более далёких галактик связана с тем, что при преодолении больших расстояний длины волн таких сигналов увеличиваются, что приводит к уменьшению энергии волны. Учёным помог феномен гравитационного линзирования, предсказанный в общей теории относительности (ОТО) более века назад. ОТО предполагает, что обладающие массой объекты искажают пространство и время; чем больше масса, тем сильнее искривление. Искривляется и траектория движения света, проходящего мимо массивного объекта — в результате его источник может появляться на нескольких точках неба, а сила сигнала может увеличиваться. Произведённый SDSSJ0826+5630 радиосигнал был в 30 раз усилен другой галактикой, действующей как линзирующее тело, в результате чего расположенный на Земле телескоп смог этот сигнал принять. Значит, подобные сигналы можно будет принять и от других удалённых галактик, а длинноволновые радиотелескопы помогут лучше исследовать механизмы эволюции объектов молодой Вселенной. Результаты исследования опубликованы в мартовском выпуске британского научного журнала Monthly Notices of the Royal Astronomical Society. Создано изображение большого участка Млечного Пути с беспрецедентной детализацией — на нём 3,3 млрд объектов
19.01.2023 [11:50],
Геннадий Детинич
В новом обзоре плоскости нашей галактики Млечный Путь астрономы из США представили беспрецедентный по детализации каталог большого участка, на котором находится 3,32 млрд каталогизированных объектов. Это означает, что каждый объект индивидуален, строго определён и может быть использован для научных наблюдений. Это как общая фотография с изображением 3,32 млрд людей, на которой каждый человек легко узнаваем. Просто невероятно! Панорамное изображение в полном разрешении и каталог свободно доступны по этой ссылке. Это вторая редакция обзора, сделанного с помощью камеры для изучения темной энергии (DECaPS2), построенной Министерством энергетики США в Межамериканской обсерватории Серро Тололо NSF в Чили в рамках программы NOIRLab. Скрывать такие данные нет смысла. Учёные их будут десятилетиями разбирать и анализировать. А ведь даже такой объём информации — это иголка в стоге сена. Обзор охватил только 6,5 % плоскости Млечного Пути, и будут новые и новые редакции этого и других обзоров. Обзор неба камерой DECaPS2 — это обзор плоскости Млечного Пути на южном небе, сделанный в оптическом и ближнем инфракрасном диапазонах волн. Первая порция данных DECaPS была опубликована в 2017 году, а с добавлением новых данных обзор теперь охватывает 6,5 % ночного неба с охватом на впечатляющие 130 градусов в длину. Хотя это может показаться скромным, но это в 13 000 раз больше угловой площади полной Луны. В ходе двухлетней работы DECaPS2 было получено более 10 Тбайт данных от 21 400 отдельных экспозиций. Наблюдение позволило различить около 3,32 млрд объектов, что, возможно, представляет самый большой каталог, составленный на сегодняшний день для одной камеры. И ведь для этого использовался ещё не самый большой телескоп — всего лишь с 4-м зеркалом Víctor M. Blanco в Межамериканской обсерватории Серро Тололо (CTIO). В данном наблюдении впервые были реализованы алгоритмы, позволяющие лучше отделить фон от объекта. Близкие и дальние звёзды накладываются друг на друга, как и расположение звёзд на фоне светящихся галактик не позволяет отделить один объект от другого. Наконец, пылевые облака не проницаемы для видимого диапазона электромагнитных волн, с чем пришлось бороться наблюдениями в ближнем инфракрасном диапазоне. Результатом этого стало появление беспрецедентного по детализации каталога DECaPS2 второй редакции. В сочетании с другими наблюдениями мы всё лучше и лучше представляем трёхмерную карту нашей галактики. А настоящее путешествие всегда начинается с хорошей карты. Астрономы нашли край нашей Галактики — прежние расчёты нам врали
10.01.2023 [13:15],
Геннадий Детинич
Новое исследование пульсирующих переменных звёзд позволило уточнить границы нашей галактики Млечный Путь. Они оказались на несколько десятков тысяч световых лет дальше от центра галактики, чем давали теоретические расчёты. Тем самым фактически мы уже входим в соприкосновение с соседней к нам галактикой Андромедой. Никакого свободного пространства между галактиками почти не осталось. Уточнить внешние границы Млечного Пути позволило обнаружение по краю границ свыше 200 звёзд типа переменной RR Лиры. В силу своих свойств переменные звёзды типа RR Лиры позволяют точно определять расстояния до них. По сути, это местные маяки, характеристики которых очень похожи и дают возможность точной оценки дальности. Именно этим в новой работе занималась группа астрономов Калифорнийского университета в Санта-Круз. Согласно расчётам, от центра галактики Млечный Путь до её края один миллион световых лет. Точно измерить внешние границы газового облака вокруг нашей галактики — так называемого гало — изнутри мы не можем, поскольку это сильно разреженный газ. Поэтому оставалось полагаться на теоретические выкладки, опирающиеся на косвенные измерения. В новой работе учёные использовали для этого измерения расстояния до 208 открытых переменных звёзд на краю нашей галактики. Одна из таких звёзд, например, оказалась на полпути между Млечным Путём и Андромедой, с которой мы идём к ДТП космических масштабов. «Это исследование по-новому определяет, что представляет собой внешняя граница нашей галактики, — сказал один из авторов работы. — Наша галактика и Андромеда настолько велики, что между ними почти нет пространства». По данным измерений выяснилось, что внешняя граница Млечного Пути на 40 тыс. световых лет дальше, чем предсказывали теоретические выкладки. В будущих территориальных претензиях к обитателям Андромеды это должно сыграть важную роль. Если серьёзно, учёные подкрепили теорию наблюдениями, что даст в руки астрономам ещё один инструмент для точной оценки астрономических явлений во Вселенной, а инструментов много никогда не бывает. Учёные приблизились к пониманию свойств первых звёзд и галактик во Вселенной, которые даже не видны
29.12.2022 [17:09],
Геннадий Детинич
Используя данные с индийского радиотелескопа SARAS3, команда исследователей под руководством учёных Кембриджского университета смогла приоткрыть завесу тайны над событиями самой ранней Вселенной — произошедшими всего через 200 млн лет после Большого взрыва. У нас пока нет возможности увидеть самые первые звёзды и галактики, но полученная информация дала намёк на их ключевые свойства. В данных SARAS3 учёные искали информацию о распространении нейтрального водорода в ранней Вселенной. Информацию об облаках водорода и их движении радиоастрономы получают на основе обнаружения так называемой 21-см линии в радиосигнале или радиолинии нейтрального водорода. Анализ данных строился на том, что плотное облако нейтрального водорода, которое как туман поглощает свет от первых звёзд во Вселенной, может стать источником вторичного излучения, а по этим данным можно будет восстановить физические параметры как звёзд на раннем этапе развития Вселенной, так и галактик, скрытых от нас этим «туманом». Как оказалось, учёных ждал сюрприз — 21-см линии с амплитудой требуемой интенсивности в данных не нашлось. Но в этой неудаче скрывалось открытие. Отсутствие сигнала позволило ввести ограничения на массу и энергию первых звёзд и, соответственно, первых галактик. Тем самым модель эволюции звёзд вскоре после Большого взрыва получила важные уточнения. Теперь астрофизики будут лучше представлять, насколько массивными и энергичными могут быть звёзды и галактики первого поколения и, как надеются исследователи, уточнённые данные помогут увидеть их «отражение» в облаке нейтрального водорода на заре Вселенной. По-настоящему зафиксировать такие объекты учёные надеются к концу текущего десятилетия, когда в строй войдут радиотелескопы нового поколения, в частности, когда будет запущена площадка Square Kilometre Array (SKA) в Австралии. Но и современные инструменты могут удивить. «Джеймс Уэбб», например, увидел кандидата в самые древние галактики возрастом 286 млн лет после Большого взрыва. Искусственный интеллект научили предсказывать массу галактик
23.12.2022 [12:13],
Геннадий Детинич
Астрономические наблюдения заканчиваются многочисленными расчётами. Но в зависимости от множества факторов эти расчёты могут не совпадать у разных исследователей. В этом нет ошибки. В астрофизике многое, если не всё, получается с той или иной степенью точности. И чем менее точный результат, тем сложнее расчёты. Оказалось, с такими расчётами хорошо справляются ИИ-алгоритмы, выполняя работу за недели вместо месяцев и лет работы людей. Так, исследователи из Университета Карнеги-Меллона (CMU) использовали предоставленные Питтсбургским суперкомпьютерным центром (PSC) ресурсы, включая суперкомпьютер Bridges-2, выделенные по программе ACCESS, чтобы обучить искусственный интеллект предсказывать массу такого крупного скопления галактик, как Скопление Волос Вероники (333 млн световых лет от Земли). Учёные предложили алгоритму всю известную информацию о скоплении и на выходе получили результат, который совпал с уже сделанными ранее предсказаниями астрофизиков. Тем самым эксперимент подтвердил способность алгоритма на основе машинного обучения предсказывать массу галактик с доступной нам точностью, которая, естественно, ограничена возможностями наших инструментов для наблюдения. И тут уже без разницы, кто считает — человек или ИИ. Для вооружённого компьютерами учёного расчёт массы галактики может занять до одного года работы. Искусственный интеллект справился с этим за несколько недель. С учётом несметного числа галактик во Вселенной ИИ предоставляет инструмент прогнозирования, который поможет проанализировать намного больше астрофизических явлений, чем многочисленная армия учёных, а это открытия, на которые раньше не хватало времени и сил, и часто важные мелочи, на которые просто не обращали внимание. Будет интересно узнать, как учёные распорядятся новым инструментом. Телескоп «Джеймс Уэбб» подтвердил возраст самых древних из найденных галактик
10.12.2022 [12:28],
Геннадий Детинич
С самого начала научной работы космической обсерватории James Webb («Джеймс Уэбб») стали поступать сообщения об открытии галактик в молодой Вселенной. Открытия посыпались как из рога изобилия, что очень удивило учёных. На этом отрезке развития Вселенной не должно было быть так много звёзд и уж тем более галактик. Древность этих объектов ещё следовало доказать, и «Джеймс Уэбб» помог поставить точку в этом вопросе. Возраст объектов во Вселенной определяется по красному смещению (параметр z). Чем больше величина красного смещения, тем древнее звёзды и галактики. Прямые наблюдения в видимом и инфракрасном излучении не дают гарантии точного определения величины z. Красный спектр звезды вовсе не означает, что она находится на определённом расстоянии от нас. Красным она может светиться, например, по причине особенных ядерных процессов внутри. Точно определить величину красного смещения звёзд и галактик (по звёздному населению) можно только при анализе спектра. При наблюдении линий спектра молекулярного водорода существует такой маркер, как предел Лаймана (длина волны 91,15 нм). После этого предела спектр обрывается, и по этой отметке можно легко вычислить истинное значение возраста звезды: достаточно наблюдаемые (и поэтому искажённые временем и расстоянием) величины соотнести с этой пограничной отметкой. Телескоп «Джеймс Уэбб» имеет на борту инструмент для спектрального анализа излучения в ближнем инфракрасном диапазоне (NIRSpec). Этот инструмент позволил точно зафиксировать предел Лаймана для четырёх новых кандидатов в самые древние галактики, обнаруженные во Вселенной. На сбор данных понадобилось трое суток и 28 часов непрерывного сбора света от этих объектов. Самая древняя подтверждённая «Уэббом» галактика имеет величину красного смещения z13,2. Она возникла менее чем через 400 млн лет после Большого взрыва или на отрезке всего в 2 % от сегодняшнего времени существования Вселенной. Следует сказать, что данная конкретная работа ещё не прошла рецензирования, но уже мало кто из учёных сомневается, что в ранней Вселенной полно и звёзд, и галактик. Новые и новые данные с «Уэбба» наверняка будут подтверждать это, что заставит земную науку задуматься о нашем явно ошибочном представлении об эволюции Вселенной на раннем этапе развития. В прошлое Вселенной поможет заглянуть крошечная галактика по прозвищу «Ку-ку»
07.12.2022 [19:07],
Геннадий Детинич
Одновременные наблюдения несколькими земными и космическими обсерватории крошечной галактики HIPASS J1131-31 по прозвищу Peekaboo («Ку-ку») позволили определить, что это самый близкий к Земле образец галактики из молодой Вселенной, когда в ней не было ничего, кроме атомов водорода и гелия. Это как окно в прошлое, но на расстоянии вытянутой руки — полный восторг для астрономов. Прозвище «Ку-ку» галактика HIPASS J1131-31 получила по причине внезапного появления из-за яркой звезды около 100 или 50 лет назад. До этого она была не видна. Размеры галактики HIPASS J1131-31 всего 1200 световых лет, а удалена она от нас на расстояние 20 млн световых лет. Иными словами, галактика «Ку-ку» находится в местной части Вселенной, хотя по её составу это было бы тяжело представить. Дело в том, что HIPASS J1131-31 характеризуется как «чрезвычайно бедная металлами». В астрофизике, напомним, металлами называется всё, что тяжелее водорода и гелия. Галактики исключительно из водорода и гелия возникали и могли развиваться лишь на этапе вскоре после Большого взрыва. В юной Вселенной просто не было атомов иных веществ. Все они образовались гораздо позже в ядерных реакциях в поздних звёздах. Впервые Peekaboo была обнаружена более 20 лет назад как область холодного водорода. Наблюдение провёл австралийский радиотелескоп Мурриянг в Парксе в рамках программы HI Parkes All Sky Survey. Позже наблюдения в дальнем ультрафиолетовом диапазоне с помощью космического аппарата NASA Galaxy Evolution Explorer показали, что это компактная голубая карликовая галактика. «Сначала мы не понимали, насколько особенной является эта маленькая галактика, — сказал первооткрыватель объекта австралийский астроном Бербель Корибальски (Bärbel Koribalsk). — Теперь, благодаря объединенным данным космического телескопа «Хаббл», Южноафриканского большого телескопа (SALT) и других, мы знаем, что галактика «Ку-ку» — одна из самых бедных металлами галактик из когда-либо обнаруженных». На примере изучения HIPASS J1131-31 астрономы могут исследовать галактическую среду и структуру, которые должны были остаться в далёком прошлом — миллиарды лет назад. «Хаббл» без длительных экспозиций различил в этой галактике около 60 звёзд. Снимки глубокого поля с длительной выдержкой смогут дать намного больше информации, а ведь есть ещё «Джеймс Уэбб» с его большей чувствительностью! «Открытие галактики Peekaboo — это как прямое окно в прошлое, позволяющее нам изучать её экстремальную среду и звезды на таком уровне детализации, который недоступен в далёкой, ранней Вселенной», — сказал астроном Гагандип Ананд (Gagandeep Anand) из Научного института космического телескопа в Балтиморе, штат Мэриленд, соавтор нового исследования об интригующих свойствах Peekaboo. Представлен наиболее детальный снимок сердца скопления галактик в созвездии Персея
30.11.2022 [10:11],
Руслан Авдеев
Структура в сердце скопления галактик в созвездии Персея теперь может быть рассмотрена более детально — учёные создали потрясающее комбинированное изображение благодаря новой методике, объединяющей снимки в рентгеновском и радиодиапазонах. Для получения снимка центральной части Скопления Персея были объединены данные с массива антенн радиотелескопа LOFAR (Low Frequency Array) и рентгеновской обсерватории «Чандра», а также телескопов WIYN и «Хаббл». Используя такую комбинацию, учёные получили не только потрясающее изображение, но, что более важно, оно позволило команде астрономов больше узнать о происхождении загадочной структуры на снимке. По словам ведущего автора исследования Роланда Тиммермана (Roland Timmerman) из нидерландского Лейденского университета, комбинация снимков позволяет лучше понять, что происходит в данном скоплении. Красным отображается радиоизлучение, полученное LOFAR, синим — рентгеновское излучение, захваченное телескопом Chandra, а белым — H-альфа излучение тёмно-красной видимой части спектра, полученное телескопом WIYN. Наконец, ночное небо снято телескопом Hubble в оптическом диапазоне. Фактически цвета маркируют разные типы излучения в скоплении галактик — в видимом диапазоне такие подробные данные получить бы не удалось. Используя методику команды Тиммермана, астрономы смогут объединять и другие изображения, что поможет больше узнать об эволюции скоплений, от рождения звёзд до появления сверхновых и столкновения галактик. Считается, что в центре большинства крупных галактик скрываются сверхмассивные чёрные дыры. Когда речь идёт о скоплении галактик, отдельные его структуры могут сформироваться в результате выбросов газа сверхмассивными чёрными дырами в некоторых галактиках, составляющих скопление. Материя подобных струй газа нагревает окружающий газ, что и приводит к формированию структур, видимых на снимке. Так, считают учёные, и образовалась показанная на снимке структура в центра Скопления Персея. Она простирается на десятки тысяч световых лет и находится в таком состоянии сотни миллионов лет. LOFAR является крупнейшим радиотелескопом на Земле со штаб-квартирой в Нидерландах. С момента начала работы в 2010 году в Европе для него построили дополнительные антенны, что позволяет делать снимки в радиодиапазоне с высоким разрешением, распознавая радиоизлучение на очень низких частотах. До того, как LOFAR добавили новые антенны, создание комбинированного снимка такого качества было невозможно. |