реклама
Теги → джеймс уэбб
Быстрый переход

«Джеймс Уэбб» показал области формирования звёзд и эволюцию галактик

Космический телескоп «Джеймс Уэбб» (JWST) 11 октября 2022 года в течение 20 часов производил наблюдение участка под названием «Сверхглубокое поле Хаббла» (Hubble Ultra-Deep Field — HUDF) и предоставил его изображение в нескольких диапазонах с длинами волн от 1,8 до 4,8 мкм.

 Источник изображений: nasa.gov

Источник изображений: nasa.gov

Изображение было получено камерой ближнего инфракрасного диапазона (NIRCam) на «Джеймсе Уэббе» в десять раз быстрее, чем это около 20 лет назад сделали приборы на «Хаббле» (Hubble). Снимок с фильтром 1,8 мкм (F182M) обозначен синим, 2,1 мкм (F210M) — зелёным, 4,3 мкм (F430M) — жёлтым, 4,6 мкм (F460M) — оранжевым и 4,8 мкм (F480M) — красным.

Астрономы отметили на снимках области горячего ионизированного газа, где формируются звезды, и области, где они уже были сформированы. Эта информация чрезвычайно важна для учёных, которые до сих пор не описали всех механизмов формирования галактик. С новой аппаратурой процесс съёмки занял менее суток, и этого хватило, чтобы начать собирать новую картину эволюции галактик на ранних этапах развития Вселенной.

На изображении выше приведены снимки одной и той же области, сделанные «Хабблом» и «Джеймсом Уэббом». Первый был получен за 11,3 суток, а второй — за 0,83 суток. В некоторых областях изображения «Джеймса Уэбба» проявились галактики, не попавшие на первый снимок.

Фильтры NIRCam охватывают короткие диапазоны, обеспечивая таким образом достаточно высокую точность при наблюдениях и помогая учёным лучше разобраться в истории формирования звёзд и галактик, в том числе и в эпоху реионизации, когда нейтральный газ начал превращаться в ионизированную плазму. Получается своего рода гибрид между спектроскопией и визуальными наблюдениями, благодаря чему учёные могут отмечать галактики, сформировавшиеся, когда Вселенной было около миллиарда лет, то есть к окончанию эпохи реионизации.

«Джеймс Уэбб» показал неизвестные ранее детали в остатках самой молодой сверхновой нашей галактики

Среди целого ряда целей для изучения в списке космической обсерватории «Джеймс Уэбб» (James Webb) значатся остатки сверхновых. Всё, что мы видим вокруг и из чего состоим сами, — всё рождено в звёздах. Каждый атом нашего тела когда-то был рождён звездой, и некоторые атомы были выброшены во Вселенную во взрывах сверхновых. В этих процессах остаётся много неизвестного земной науке, и «Джеймс Уэбб» стал инструментом для их познания.

 Нажмите, чтобы увеличить. Источник изображения: NASA, ESA, CSA, D. D. Milisavljevic (Purdue)

Нажмите, чтобы увеличить. Источник изображения: NASA, ESA, CSA, D. D. Milisavljevic (Purdue)

Сверхновая в созвездии Кассиопея вспыхнула 340 лет назад. Это самые молодые остатки события такого рода в нашей галактике. Размеры остатков Cas A простираются на 10 световых лет и удалены от нас на 11 тыс. световых лет. Поскольку событие случилось сравнительно недавно, рассмотрение объекта — отличный способ узнать о характере, направлении и интенсивности разлёта остатков. Сверхчувствительные инфракрасные приборы «Уэбба» позволяют в деталях рассмотреть структуру газа и пыли после события и воссоздать историю звезды даже до момента её взрыва.

Остатки Кассиопея А ранее широко изучались рядом наземных и космических обсерваторий, включая рентгеновскую обсерваторию NASA «Чандра». Эти данные, полученные на разных длинах волн, были объединены с данными «Уэбба» для воссоздания детальной картины происшествия. Добавим, все изображения с «Уэбба» получены в невидимом для человеческого глаза диапазоне, и поэтому для общего использования и эстетики они специально раскрашиваются. По мере повышения частоты электромагнитного излучения объекта ему присваивают цвета от красного до синего.

На полученном «Уэббом» снимке Cas A сверху и слева по границам картинки мы видим завесы из материала оранжевого и красного цвета, рождённые излучением тёплой пыли. В этих областях выброшенное звездой вещество сталкивается с окружающим околозвездным газом и пылью. Ярко светящееся вещество звезды в виде пестрых нитей ярко-розового цвета лежит чуть глубже остывающей пыли и выделяется благодаря свечению смеси различных тяжелых элементов, таких как кислород, аргон и неон и других.

Во внутреннем пространстве объекта выделяется петля зелёного цвета, проходящая от центра к правому краю. В ней много пузырьков, природу которых учёные пока объяснить не могут, но отчаянно пытаются. Детальный разбор этого изображения — шанс приблизиться к пониманию происхождения космической пыли в межзвёздном пространстве. Её неожиданно много даже в молодых галактиках. Сверхновые — это один из предполагаемых источников космической пыли во Вселенной, но до конца этот вопрос так и не решён. Наблюдение за Cas A с помощью «Уэбба» позволит пролить толику света на эту загадку.

«Понимая процесс взрыва звёзд, мы читаем свою собственную историю происхождения», — говорят астрономы.

Телескоп «Джеймс Уэбб» запечатлел Уран с яркими кольцами и спутниками

Космический телескоп «Джеймс Уэбб» Национального управления по аэронавтике и исследованию космического пространства (NASA) США прислал свежий снимок планеты Уран — ледяного гиганта Солнечной системы. На представленном снимке отчётливо видны кольца Урана и некоторые спутники планеты.

 Источник изображений: NASA / ESA / CSA / STScI / J. DePasquale (STScI)

Источник изображений: NASA / ESA / CSA / STScI / J. DePasquale (STScI)

Уран является седьмой планетой от Солнца, и он действительно уникален. Планета вращается «лежа на боку» — экватор повёрнут к плоскости орбиты почти на 98 градусов. Этим обусловлены экстремальные климатические условия, ведь полюса Урана в течение многих лет находятся под солнечным светом, а затем на столь же длительный период погружаются в полную темноту. Период обращения Урана вокруг Солнца занимает 84 года. В настоящее время на северном полюсе, который попал в объектив космической обсерватории, идёт поздняя весна, а лето наступит в 2028 году.

Новое изображение Урана получено с помощью камеры ближнего инфракрасного диапазона NIRCam, которая размещена в конструкции «Джеймса Уэбба». На полученном изображении планета имеет голубой оттенок. Изображение раскрывает некоторые особенности динамичной атмосферы планеты. На правой стороне Урана на полюсе, обращённом к Солнцу, есть область повышенной яркости, которую называют полярной шапкой. Она является уникальной, поскольку появляется только в период, когда на эту область попадают прямые солнечные лучи.

Осенью полярная шапка исчезает и учёные надеются, что полученные в ходе наблюдения данные помогут узнать больше об этом феномене. На краю полярной шапки можно рассмотреть яркое облако, а также несколько протяжённых объектов сразу за краем шапки. Второе яркое облако видно у левого края лимба планеты. Такие облака типичны для Урана и, вероятно, связаны с грозовой активностью. Планета характеризуется как ледяной гигант из-за своего химического состава. Считается, что большую часть массы планеты составляет горячая плотная жидкость из «ледяных» материалов, таких как вода, метан и аммиак.

Уран имеет 13 известных колец, 11 из которых видны на представленном снимке. Некоторые из них получились настолько яркими, что может показаться, как будто они сливаются в одно широкое кольцо. В дополнение к этому в поле зрения космической обсерватории попали многие из 27 известных спутников Урана. Шесть наиболее ярких спутников выделены на представленном NASA снимке.

«Джеймс Уэбб» подтвердил обнаружение самой древней галактики, которую видело человечество

Во вторник в журнале Nature Astronomy вышла прошедшая рецензию статья, которая утвердила статус самой древней из наблюдаемых галактик. Объект JADES-GS-z13-0 образовался через 320 млн лет после Большого взрыва. На нынешнем отрезке жизни Вселенной это всего 2 % от её существования. Открытие бросает вызов нашему чёткому пониманию эволюции звёзд, галактик и даже самой Вселенной.

 Источник изображения: Robertson et al., Nature Astronomy, 2023

Источник изображения: Robertson et al., Nature Astronomy, 2023

Галактика JADES-GS-z13-0 и три других подобных объекта в ранней Вселенной были обнаружены летом прошлого года в первых обзорах космической обсерватории «Джеймс Уэбб». Это были фотометрические обзоры, которые не позволяют оценить истинное расстояние или, если угодно, возраст галактик. Об удалённости светящихся объектов во времени говорит их спектр. Точнее, анализ линий спектра молекулярного водорода и поиск так называемого предела Лаймана (длина волны 91,15 нм). Спектр обрывается на этой границе, и это служит точкой отсчёта для вычисления величины красного смещения объекта и его удалённости от нас.

Учёные из международной группы астрономов использовали инфракрасные спектрографы «Джеймса Уэбба» для вычисления красного смещения четырёх галактик в ранней Вселенной: JADES-GS-z10-0, JADES-GS-z11-0 и JADES-GS-z12-0 и JADES-GS-z13-0. И если до этого все четыре галактики были кандидатами в своей категории, то после спектрального анализа и публикации статьи они стали тем, чем являются — первые три галактики находятся на отрезке менее 450 млн лет после Большого взрыва и их красные смещения, соответственно, равны 10,38, 11,58 и 12,63, а четвёртая и вовсе рекордсмен!

Самой далёкой от нас стала галактика JADES-GS-z13-0 со смещением 13,2 или обнаруженная через 320 млн лет после Большого взрыва. Прежний рекорд был установлен в наблюдениях «Хаббла» — галактика GN-z11 со смещением 10,95 или на этапе 400 млн лет после Большого взрыва.

Также изучение всех четырёх объектов показало, что они имеют массы примерно 100 млн солнечных масс, что для первых галактик нормально. Наш Млечный Путь, например, имеет массу 1,5 трлн солнечных масс. При этом в юных галактиках происходит активное звездообразование (относительно их масс) — каждый год там рождается примерно по три звезды массы Солнца. Кроме того, как положено юным галактикам, они бедны на металлы или на химические вещества тяжелее гелия.

В принципе, открытие галактик в такой ранний период эволюции Вселенной крайне познавателен, но не столь необычен. Необычность, которая бросает вызов нашим знаниям о Вселенной, в том, что таких объектов много больше и они более активны, чем считалось ранее. Тот же «Джеймс Уэбб» обнаружил чуть позже шесть очень массивных галактик в ранней Вселенной, где им быть в теории не положено, но они там есть.

«Джеймс Уэбб» обнаружил самую раннюю из сверхмассивных чёрных дыр

Всего час наблюдений «Джеймса Уэбба» за галактикой в ранней Вселенной помог сделать открытие, которое может стать мостиком к раскрытию одной из загадок в эволюции Вселенной — как и каким образом образовались первые сверхмассивные чёрные дыры, если во время их роста не было необходимых для этого условий. Эволюция чёрных дыр изобилует пробелами, и все новые данные о них имеют особую ценность.

 Источник изображения: Pixabay

Источник изображения: Pixabay

Открытие сделано при наблюдении за галактикой EGSY8p7 (позже переименована в CEERS_1019), обнаруженной ещё в данных «Хаббла» в 2015 году. Это галактика из ранней Вселенной, примерно в 570 млн лет от Большого взрыва. Удалённость объекта и эффект расширения Вселенной сместили свет от неё далеко в инфракрасную область — это как раз специализация «Джеймса Уэбба».

Первоначально объект EGSY8p7 был интересен учёным по причине ярчайшего проявления эффекта звездообразования. Чувствительные спектрометры «Уэбба» увидели в спектре галактики влияние иных явлений, кроме звездообразования. Оказалось, у EGSY8p7 (CEERS_1019) активное галактическое ядро, что означает наличие там активно растущей сверхмассивной чёрной дыры. Увидеть одновременно оба явления — это оказалось удивительным.

Расчёты показали, что масса чёрной дыры у EGSY8p7 в 10 млн раз превышает массу Солнца. Это относит её к нижнему уровню сверхмассивных чёрных дыр. Это не первый подобный объект в ранней Вселенной. Ранее там были открыты гораздо более крупные чёрные дыры: галактика-квазар J1342+0928, обнаруженная в 690 млн лет после Большого взрыва, имеет сверхмассивную чёрную дыру массой в 800 миллионов Солнц, а чёрная дыра в J0313-1806, обнаруженная в 670 млн лет после Большого взрыва, имеет массу 1,6 млрд Солнц.

В то же время в обоих галактиках-квазарах в спектре доминирует активное ядро, чего нет в случае галактики EGSY8p7. Поэтому она может быть промежуточным этапом в эволюции сверхмассивных чёрных дыр. А ведь «Уэббу» дали только час на совершение этого интересного открытия! Учёные уверены, что вскоре «Джеймс Уэбб» начнёт выдавать такой огромный поток новых данных по этим и другим объектам в ранней Вселенной, что наше понимание об эволюции звёзд и устройства мира перейдёт на новый качественный уровень.

Телескоп «Джеймс Уэбб» не нашёл атмосферы на землеподобной планете в системе TRAPPIST-1

Новые наблюдения космического телескопа «Джеймс Уэбб» показали, что скалистая планета, вращающаяся вокруг красного карлика TRAPPIST-1, вероятнее всего, не имеет никакой атмосферы. Это лишает учёных надежды на то, что на планете TRAPPIST-1b может обнаружиться биологическая жизнь. Впрочем, в системе имеется ещё шесть землеподобных планет для изучения.

 Источник изображения: NASA

Источник изображения: NASA

Астрономы использовали камеру среднего инфракрасного диапазона Mid-Infrared Instrument (MIRI) телескопа «Джеймс Уэбб» для измерения температуры на планете. Из семи планет системы TRAPPIST-1, планета TRAPPIST-1b размером в 1,4 раза больше Земли, находится ближе всего к местному светилу. Измерения показали, что дневная температура на планете составляет 230 градусов по Цельсию. По мнению астрономов, наличие атмосферы маловероятно, поскольку следов перераспределения света атмосферой или его поглощения углекислым газом или другими веществами не обнаружено. В NASA заявили, что рассчитывали на другие результаты. Некоторые исследователи прогнозировали наличие плотной атмосферы.

Расстояние между TRAPPIST-1b и звездой составляет всего 1/100 от расстояния, разделяющего Землю и Солнце, планета в 40 раз ближе к звезде, чем Меркурий к нашему светилу. Хотя красный карлик светит далеко не так ярко, как Солнце, планета получает вчетверо больше звёздного света, чем Земля. Другими словами, астрономы всерьёз не рассчитывали на наличие жизни ещё до того, как выяснилось, что атмосфера здесь отсутствует. Впрочем, в любом случае речь идёт о большом научном прорыве, поскольку «Джеймс Уэбб» доказал возможность получения подробной информации о столь отдалённом объекте.

Известно, что в системе TRAPPIST-1 имеются как минимум три планеты, имеющие условия для существования воды в жидком виде и в теории способные служить прибежищем для жизни: TRAPPIST-1e, 1f и 1g.

 Источник изображения: NASA

Источник изображения: NASA

TRAPPIST-1 чрезвычайно популярна среди учёных — эта система за исключением Солнечной является самой исследованной по версии NASA. Звезда расположена в 40 световых годах от Солнца. Размер красных карликов подобного типа составляет всего от 0,08 до 0,6 от солнечного, это самый распространённый тип звёзд в Млечном пути. По словам учёных, в нашей галактике находится примерно в 10 раз больше таких звёзд, чем солнцеподобных. При этом 95 % скалистых планет земного размера в Млечном пути, вероятно, вращаются именно вокруг звёзд вроде TRAPPIST-1, поэтому изучение этой звёздной системы может помочь учёным понять, на каких объектах лучшие условия для возникновения жизни.

Предыдущие наблюдения с помощью телескопа «Хаббл» и отправившегося на покой телескопа «Спитцер» не обнаружили следов атмосфер на всех планетах звёздной системы. Тем не менее, учёные не исключают возможности, что на TRAPPIST-1b всё-таки существует очень тонкая атмосфера, которая может отличаться от атмосфер планет Солнечной системы. В июне запланированы новые наблюдения, внимание будет уделяться излучению с другими длинами волн, предлагается наблюдать за большей частью орбиты планеты. Не исключено, что это поможет открыть новые типы атмосферы. Результаты исследования опубликованы в журнале Nature.

«Джеймс Уэбб» впервые в истории человечества наблюдал пылевую бурю на планете из другой звёздной системы

Люди уже научились находить планеты у далёких звёздных систем и определять их размеры, вес и плотность. На очереди анализ атмосфер и поиск признаков биологической жизни. Космическая обсерватория «Джеймс Уэбб» решает последние задачи лучше предыдущих инструментов. Благодаря спектрометрам «Уэбба» наблюдение далёкой экзопланеты VHS 1256 b впервые дало целый спектр показаний по составу воздуха и даже облаков мира из иной системы.

 Экзопланета в представлении художника. Источник изображения: NASA, ESA, CSA, Joseph Olmsted (STScI)

Экзопланета VHS 1256 b в представлении художника. Источник изображения: NASA, ESA, CSA, Joseph Olmsted (STScI)

Ранее астрономы могли получить достоверную информацию по одному из параметров состава атмосферы экзопланеты. «Джеймс Уэбб» сделал это по нескольким показателям. Он не только различил в спектре VHS 1256 b метан, воду, угарный газ и следы углекислого газа, но даже смог распознать в её облаках пыль и песок из силикатных минералов. С некоторой натяжкой можно сказать, что «Уэбб» наблюдал пылевую бурю в инопланетном мире.

Надо сказать, что астрономам повезло с экзопланетой VHS 1256 b. Этот мир сравнительно молодой — ему примерно 150 млн лет и поэтому он горячий. Температура облаков в верхних слоях атмосферы VHS 1256 b достигает 830 °C. Инфракрасные спектрографы обсерватории заточены на работу в таких условиях. Данные принимаются как спектрографом ближнего инфракрасного диапазона (NIRSpec), так и прибором среднего инфракрасного диапазона (MIRI). Если бы атмосфера VHS 1256 b не была бы такой горячей, её спектр можно было бы узнать только в процессе прохождения планеты по диску звезды за счёт прохождения фонового света сквозь атмосферу.

Впрочем, у транзитного метода тоже есть недостаток. Свет звезды сильно затруднил бы получение данных по планете. Коронографы и другие инструменты помогают с этим бороться, но у всего есть предел. И астрономам повезло с VHS 1256 b второй раз. Эта экзопланета вращается настолько далеко вокруг своей звезды, точнее — вокруг пары своих звёзд (это двойная система), что свет звёзд не мешает вести наблюдение. Один оборот VHS 1256 b делает за 10 тыс. лет. Это как если бы Плутон находился в четыре раза дальше от Солнца.

 Спектр Экзопланеты

Спектр экзопланеты VHS 1256 b

Наконец, экзопланета VHS 1256 b расположена сравнительно недалеко от нашей системы — примерно на расстоянии 40 световых лет, что позволяет «Уэббу» вести уверенные наблюдения. Телескоп надёжно фиксировал, как облака силикатного песка и пыли поднимались и смешивались с воздушными массами в течение 22-часового местного дня. Экзопланета VHS 1256 b стала первым на сегодняшний день объектом планетарной массы, яркость которого меняется в крайних пределах в течение суток. Можно сказать, что мы впервые наблюдаем погодные явления в инопланетном мире и это действительно впечатляет.

«Джеймс Уэбб» запечатлел звезду, которая готовится стать сверхновой

NASA поделилось изображением звезды WR 124, которое получил космический телескоп «Джеймс Уэбб» (JWST). Светило располагается в созвездии Стрельца на расстоянии 15 тыс. световых лет от Земли. Наиболее интересной особенностью данной звезды является то, что она находится в процессе, предшествующем превращению в сверхновую.

 Источник изображения: nasa.gov

Источник изображения: nasa.gov

Первое изображение звезды WR 124 телескоп получил в июне 2022 года — этот редкий объект находится в фазе Вольфа — Райе. Такие звезды становятся одними из наиболее крупных и ярких звёзд в ночном небе, и после данной фазы у массивных звёзд следует взрыв сверхновой. По оценкам учёных, масса WR 124 в 30 раз превышает солнечную массу, и к настоящему моменту её потери вещества в десять раз превышают массу Солнца. Со временем выбрасываемый звёздами Вольфа — Райе газ остывает и образует космическую пыль.

Космическая пыль, которая успешно наблюдается в инфракрасном диапазоне, интересует астрономов по ряду причин, и в первую очередь потому, что это важный строительный блок для объектов Вселенной. Он может укрывать формирующиеся звезды и образовывать планеты. На данный момент учёные не располагают убедительной теорией, способной объяснить количество присутствующей во Вселенной космической пыли — её больше, чем предсказывает теория, — и есть вероятность, что новые данные «Джеймса Уэбба» помогут в решении этой задачи.

Пока изучающие космическую пыль астрономы не обладали достаточным объёмом данных, чтобы исследовать особенности её образования в средах вроде WR 124, а также понять, достаточны ли размеры её частиц и её общий объём, чтобы «выжить» при взрыве сверхновой, сохранив статус строительного материала. Результаты прямых наблюдений объекта помогут в дальнейших исследованиях вопроса, пояснили в NASA.

Во взрыве белого карлика «Джеймс Уэбб» разглядел нюансы химической эволюции Вселенной

Водород и гелий — первые элементы, возникшие сразу после Большого взрыва. Вся остальная «таблица Менделеева» появилась много позже и была рождена в звёздах в процессе термоядерных реакций. Астрофизики в целом представляют эволюцию химических элементов во Вселенной, но самое лучшее — убедиться в работе теории на практических наблюдениях. «Джеймс Уэбб» даёт такую возможность на новом уровне.

 Источник изображения: The Astrophysical Journal Letters

Источник изображения: The Astrophysical Journal Letters

За неполный год наблюдений космическая обсерватория «Джеймс Уэбб» собрала достаточно данных для анализа множества явлений во Вселенной. Это тем более важно, что самые интересные открытия происходят случайно. Поле зрения телескопов очень маленькое и смотреть сразу во всех направлениях не получается. Приходится едва ли не тыкать пальцем в небо. Совершенно случайно при наблюдении за галактикой NGC 1566 астрономы увидели в одном из её рукавов сверхновую SN 2021aefx типа 1a (углеродно-кислородного белого карлика).

Инфракрасные приборы и спектрометры «Джеймса Уэбба» оказали неоценимую услугу при наблюдении этого объекта. Сверхновая наблюдалась через 200 дней после взрыва, и её слабое послесвечение никогда не могло быть уловлено с Земли. В данном конкретном наблюдении учёные проследили за механизмом превращения изотопа кобальта в изотоп железа. Эти элементы возникают и эволюционируют в процессе жизненного цикла звёзд, и без них не было бы ничего во Вселенной, включая нас с вами. Все атомы, из которых состоит каждый человек на Земле, когда-то были рождены в звёздах и «Джеймс Уэбб» на практике помог подтвердить эту теорию.

Машина времени Вселенной: одна и та же галактика появилась в трёх разных местах на одном фото с «Джеймса Уэбба»

Вселенная полна парадоксов. Один из них заключается в том, что мы можем видеть далёкие космические объекты одновременно на разных отрезках их жизненного пути. Происходит это тогда, когда свет от них проходит по нескольким маршрутам разной протяжённости, как это случилось при наблюдении за сверхновой AT 2022riv, расположенной далеко за галактическим скоплением RX J2129.

 Изображение одной и той же сверхновой на разных стадиях активности и её галактики-хозяина. Источник изображения: ESA/Webb, NASA & CSA, P. Kelly

Одна и та же сверхновая на разных стадиях активности и её галактика-хозяйка. Источник изображения: ESA, NASA и CSA

Галактическое скопление RX J2129 находится от нас на удалении 3,2 млрд световых лет. Оно включает минимум 15 галактик, общая масса которых настолько велика и неравномерно распределена в пространстве, что искажает свет от всех объектов у него за спиной. За счёт неравномерного распределения массы скопления свет от фоновых объектов приходит к нам с разной задержкой, что особенно ценно, если это объекты переменной светимости.

Учёным повезло, что ранее в поле зрения «Хаббла» при наблюдении эффекта гравитационного линзирования, вызванного скоплением RX J2129, попала галактика с недавно вспыхнувшей сверхновой. Изучение этого объекта с помощью инфракрасных инструментов более мощного телескопа «Джеймс Уэбб» позволило получить более детальные изображения объекта. На снимке «Уэбба» сверхновая позирует три раза с интервалами 320 и 1000 дней после «оригинального» события. Это как если кого-то на одном кадре запечатлели сегодня, через год и через два с половиной года.

 Принцип работы эффекта гравитационного линзирования

Принцип работы эффекта гравитационного линзирования

Везение с изображением сверхновой в подобной ситуации позволяет уточнить космологические теории, связанные со скоростью расширения Вселенной. Нам известна светимость объекта и характер её изменения со временем, а это вносит в расчёт большую точность. Шаг за шагом учёные уточняют модели, а это ведёт к более глубокому пониманию явлений и мироустройства в целом.

«Джеймс Уэбб» обнаружил в ранней Вселенной галактики, которых там не должно быть — они слишком большие

Космическая обсерватория «Джеймс Уэбб» продолжает делать открытия, которые ставят под сомнение основы современных космологических теорий. Чувствительности инфракрасных приборов телескопа хватает на то, чтобы различать объекты на ранних этапах эволюции Вселенной. Вопреки ожиданиям, там оказалось много звёзд и галактик, которым нет места в научных теориях. Новое открытие ещё сильнее озадачило учёных.

 Источник изображения: NASA / ESA / CSA / I. Labbe

Шесть галактик-кандидатов на звание самых массивных из самых ранних во Вселенной. Источник изображения: NASA / ESA / CSA / I. Labbe

Первые наблюдения «Уэбба» в прошлом году позволили обнаружить множество кандидатов в первые звёзды и галактики в те времена, когда Вселенной было от 300 до 800 млн лет (сейчас Вселенной 13,8 млрд лет). На этом этапе развития Вселенной в пространстве было ещё мало вещества, чтобы звёзды формировались в больших количествах и галактики были бы большими, например, сравнимыми с нашей. Поэтому сам факт обнаружения так рано появившихся звёзд и галактик не очень удивляет. Удивляет то, насколько их оказалось много. Очень много!

Новая работа позволила определить шесть галактик-кандидатов не просто в самые молодые галактики, а в молодые массивные галактики, появившиеся в период от 500 до 800 млн лет после Большого взрыва. По количеству звёзд обнаруженные объекты оказались сравнимы с Млечным Путём — в них до 100 млрд звёзд. Это астрономы определили косвенно по яркости объектов. Чтобы такие галактики могли образоваться на столь раннем этапе развития Вселенной там каждый год должны были рождаться по сотне звёзд, тогда как в галактиках нашего типа (в спиральных) рождается примерно по три звезды в год.

Все кандидаты ещё пройдут спектроскопическое наблюдение, которое точно определит величину красного смещения в спектрах этих объектов и даст окончательное заключение насколько далеко они находятся от нас и как рано возникли во Вселенной. Учёные продолжат собирать информацию по этим и другим объектам на заре рождения нашего Космоса, хотя уже понятно, что «Джеймс Уэбб» удивил и продолжит удивлять нас новыми открытиями.

«Джеймс Уэбб» запечатлел великолепие газопылевых облаков в соседних галактиках

Космическая обсерватория «Джеймс Уэбб» сделала снимки 19 ближайших спиральных галактик в самом выгодном ракурсе — лицом к телескопу, что проявило мельчайшие детали распределения межзвёздного вещества. Это потрясающе красиво само по себе, но также изображения распределения пыли и газа внутри галактик позволяют лучше понять процессы образования звёзд и эволюции галактик. Вдвойне ценно, если это галактики типа нашей.

 Галактика NGC 1433. Источник изображения:

Галактика NGC 1433. Источник изображений: NASA, ESA, CSA и J. Lee (NOIRLab)

На основе полученных наблюдений опубликована 21 работа. Учёные были просто поражены тем качеством деталей на изображениях, которые предоставило оборудование «Уэбба». Прежде всего — это возможность работать в ближнем и среднем инфракрасном диапазоне. Видимый свет не пробивается сквозь облака межзвёздной пыли и газа, тогда как более длинные инфракрасные волны, к которым чувствительны датчики «Уэбба», легко проходят сквозь эту помеху. Подобная чувствительность позволяет выявлять скопления материала, достаточного для зажигания новых звёзд и даже видеть начало таких явлений.

 Галактика NGC 7496 (радиальные лучи оставляют растяжки вторичного зеркала телескопа — это дефекты изображения). Источник изображения:

Галактика NGC 7496 (радиальные лучи оставляют растяжки вторичного зеркала телескопа — это дефекты изображения)

«Джеймс Уэбб» собрал достаточно информации, чтобы астрономы начали создавать подробные карты распределения вещества в соседних с нами спиральных галактиках. Моделирование покажет эволюцию галактик с учётом появления новых звёзд и взрывов сверхновых, которые дадут пищу для появления следующих поколений звёзд и, тем самым, даст нам представление об эволюции галактик на протяжении их жизненного цикла. Ясное понимание подобных механизмов ведёт к улучшению модели поведения Вселенной и физических процессов в ней, о которых мы знаем очень и очень мало.

 Галактика NGC 1365

Галактика NGC 1365

Может показаться, что всё это лишено практического смысла. Где Вселенная, а где мы? На самом деле, в космическом пространстве самой природой ставятся такие «лабораторные» эксперименты, которые в земных условиях никогда нельзя будет воспроизвести. Нам остаётся уточнять параметры этих природных опытов и на этой основе судить о процессах и явлениях, о свойствах вещества и их границах и о многом другом.

 Сравненние резкости снимков обсерваторий (слева) и «Уэбб» (справа)

Сравнение резкости снимков одинаковых участков галактики M74 обсерваториями NASA «Спитцер» (слева) и «Уэбб» (справа)

Наука и техника Земли получают колоссальный толчок вперёд в попытках разобраться в происходящем. Созданный для того, чтобы просто смотреть «Джеймс Уэбб» сам по себе стал чудом инженерной техники, который далеко вперёд продвинул целый спектр технологий от обработки материалов до обработки данных. Наконец, это просто красиво, что ведёт к популяризации знаний и к притоку молодой крови в науку, а без этого у человечества будущего не будет.

«Джеймс Уэбб» на 30 часов погрузился в глубины Вселенной — открытий будет много

Космическая обсерватория «Джеймс Уэбб» провела серию наблюдений, в ходе которых делаются так называемые снимки глубокого поля. Камеры телескопа день за днём открывались на 4–6 часов в сутки для сбора света из одной и той же области пространства. Это позволяет заглянуть так далеко в юную Вселенную, куда до сих пор глаз человека не смотрел. Улов учёных оказался настолько внушительным, что даже поверхностный анализ займёт несколько месяцев.

 Источник изображения: NASA, ESA, CSA, I. Labbe (Swinburne University of Technology) and R. Bezanson (University of Pittsburgh). Image processing: Alyssa Pagan (STScI)

Нажмите для увеличения. Источник изображения: NASA, ESA, CSA, I. Labbe и R. Bezanson. Обработка изображения: Alyssa Pagan (STScI)

В этот раз наблюдения проводились в области скопления Пандора (Abell 2744). Это область, где несколько крупных скоплений галактик собираются в одно мегаскопление. Подобное сосредоточение массы в космическом пространстве настолько сильно искажает гравитацию вокруг себя (пространство-время по Эйнштейну), что свет от далёких объектов искажается вплоть до увеличения. Этот эффект называется гравитационным линзированием и позволяет лучше рассмотреть далёкие объекты — звёзды и галактики — если те находятся близко к линии зрения на массивные образования и при этом расположены далеко за ними.

Область Abell 2744 ранее рассматривал телескоп «Хаббл» и тоже делал снимок глубокого поля в этом месте пространства. Телескоп «Уэбб» тоже три раза снимал эту область, но с небольшой экспозицией. Снимок глубокого поля области скопления Пандоры «Джеймс Уэбб» делал в сумме 30 часов и включил остальные наблюдения для создания более полного панорамного изображения.

По данным «Уэбба», снимок запечатлел свыше 50 тыс. объектов, видимых в инфракрасном диапазоне, что в принципе было недоступно «Хабблу». За счёт эффекта гравитационного линзирования получены изображения далёких галактик во времена молодой Вселенной. На основе этого наблюдения астрономы начали отбор кандидатов для дальнейшего более детального изучения этих объектов.

В частности, для подтверждения возраста кандидатов будут изучаться спектры таких галактик для определения величины красного смещения, которая служит точным подтверждением возраста звёзд и галактик. Провести эти работы команда астрономов надеется летом этого года, но все полученные «Уэббом» данные выкладываются в открытый доступ и могут свободно изучаться другими командами учёных.

Телескоп «Джеймс Уэбб» изучает отдалённую молодую галактику Sparkler, «пожирающую» своих соседей

Изучение молодой карликовой галактики Sparkler с помощью космического телескопа «Джеймс Уэбб» показало, что она находится в сердце системы звёздных скоплений и «жадно питается» за их счёт, обеспечивая собственный рост.

 Источник изображения: James Josephides, Swinburne University

Источник изображения: James Josephides, Swinburne University

Это означает, что Sparkler, впервые обнаруженная с помощью «Джеймса Уэбба», своим поведением напоминает Млечный путь, тоже в своё время поглощавший более мелкие галактики. Это позволяет получить представление о том, как формировалась наша собственная галактика.

Sparkler окружена парой десятков сияющих шаровых скоплений древних звёзд, каждое из которых состоит приблизительно из миллиона светил. Как сообщает Space.com, наша галактика, например, включает около 200 шаровых скоплений.

Команда, объединяющая учёных Университета Суинберна и Университета Сан-Хосе, оценила возраст Sparkler и его окрестностей. Галактику окружают более молодые версии звёздных скоплений, находящихся вокруг Млечного пути. Сейчас масса Sparkler, питающейся древними скоплениями, богатыми элементами тяжелее водорода и гелия, составляет всего 3 % от массы Млечного пути, но ожидается, что благодаря «звёздному каннибализму» со временем наблюдаемый объект вырастет до размеров нашей галактики. Другими словами, наблюдения позволяют буквально увидеть, как формировался юный Млечный путь, когда вселенная была на 2/3 моложе, чем сегодня.

Sparkler расположена в 9 млрд световых лет от Земли, и астрономы видят её такой, какой она была через 4 млрд лет после Большого взрыва. Наблюдения возможны благодаря сверхчувствительной инфракрасной аппаратуре «Джеймса Уэбба». Наблюдениям способствует эффект «гравитационного линзирования», увеличивающего яркость излучения Sparkler, что позволяет увидеть свет, путешествовавший порядка 9 млрд лет.

Учёные продолжат исследования шаровых скоплений вокруг Sparkler, чтобы больше узнать о самой галактике, а также на основе полученных данных изучить и эволюцию Млечного пути. Как заявляют сами исследователи, само происхождение шаровых скоплений до сих пор является загадкой, поэтому большой удачей для учёных является возможность увидеть их «молодость».

«Джеймс Уэбб» смог следить за объектом со скоростью выше, чем заложили разработчики

В сентябре прошлого года космический телескоп «Джеймс Уэбб» (JWST) использовался для наблюдения за столкновением космического зонда DART с астероидом Диморф. Как выяснилось, первоначально телескоп не был рассчитан на отслеживание объектов, движущихся с такой высокой угловой скоростью, но это не помешало успешным наблюдениям.

 Космический телескоп «Джеймс Уэбб». Источник изображений: nasa.gov

Космический телескоп «Джеймс Уэбб». Источник изображений: nasa.gov

Астрономы планировали наблюдать через «Джеймс Уэбб» не только далёкие галактики, но и объекты в Солнечной системе — это значит, что аппарат разрабатывался с возможностью отслеживать цели, движущиеся относительно звёзд и галактик отдалённых областей Вселенной. Для выполнения этой задачи на борту аппарата есть специальная камера — датчик точного наведения (FGS). Телескоп фиксирует опорную звезду — любой неподвижный объект — и «смещает» её со скоростью, равной скорости цели, пока звезда остаётся в поле зрения FGS.

 Снимок, сделанный телескопом «Джеймс Уэбб» через 4 часа после столкновения астероида Диморф и зонда DARTS

Снимок, сделанный телескопом «Джеймс Уэбб» через 4 часа после столкновения астероида Диморф и зонда DART

Первоначально максимально доступная скорость для отслеживания движущихся объектов соответствовала угловой скорости Марса — 30 угловых миллисекунд в секунду или ширина полной Луны менее чем за 17 часов. В реальности изучающим Солнечную систему исследователям необходимо следить за более быстрыми объектами. Чтобы убедиться, что истинные возможности «Джеймс Уэбба» превосходят декларируемые показатели, учёные решили испытать его на нескольких объектах: начать решили с астероида 6481 Tenzing («Тенцинг»), скорость которого составляет 5 мс/с, и в итоге подтвердили, что телескоп справляется с объектами, которые движутся со скоростью до 67 мс/с.

Перед запуском миссии DART учёным поставили задачу зафиксировать столкновение аппарата с астероидом, но для этого необходимо было преодолеть планку в 100 мс/с или 360 угловых минут в час. Чтобы убедиться в том, что «Джеймс Уэбб» на такое способен, первую фазу испытаний провели на симуляторе. Несколько раз систему дорабатывали, чтобы оптимизировать её работу, и на второй фазе переключились на наблюдение околоземного астероида 2010 DF1, взяв скорости в 324 и 396 мин/ч — это был самый быстрый и яркий астероид в поле зрения телескопа, близкий к скорости DART в момент удара. Испытания завершились всего за две недели до столкновения, но при обработке результатов стало ясно, что «Джеймс Уэбб» с задачей справится.

Впоследствии подтвердилось, что телескоп действительно способен преодолевать отметку в 100 мс/с, но учёные не собираются постоянно эксплуатировать аппарат в таком режиме. Несмотря на успех, подобные задачи очень тяжело планировать: опорные звёзды остаются в поле зрения FGS слишком непродолжительное время, а их смена очень усложняет задачу. В итоге максимальная угловая скорость для отслеживаемых «Джеймсом Уэббом» объектов теперь установлена на отметке 75 мс/с, но при наличии специального разрешения этот показатель можно поднимать до 100 мс/с.

window-new
Soft
Hard
Тренды 🔥
Microsoft открыла доступ к скандальной ИИ-функции Recall — пользователям разрешили ограничить её «подглядывания» 5 ч.
Новая статья: Death of the Reprobate: что не так на картине? Рецензия 6 ч.
Главный конкурент OpanAI получил $4 млрд на развитие ИИ без следов Хуанга 6 ч.
Valve раскрыла часть игр, которые получат скидку на осенней распродаже Steam — официальный трейлер акции 7 ч.
Threads получила «давно назревавшие улучшения» в поиске и тренды 7 ч.
Ubisoft рассказала о возможностях и инновациях стелс-механик в Assassin's Creed Shadows — новый геймплей 8 ч.
Создатели Black Myth: Wukong удивят игроков до конца года — тизер от главы Game Science 10 ч.
У Nvidia больше не самые прибыльные акции — ажиотаж вокруг биткоина победил ИИ-бум 11 ч.
Заждались: продажи S.T.A.L.K.E.R. 2: Heart of Chornobyl за два дня после релиза превысили миллион копий 11 ч.
YouTube добавил в Shorts функцию Dream Screen — ИИ-генератор фонов для роликов 13 ч.