Сегодня 18 апреля 2024
18+
MWC 2018 2018 Computex IFA 2018
реклама
Теги → звезды
Быстрый переход

Учёные решили одну из космических загадок: «звёздный каннибализм» наделяет массивные звезды магнитными полями

Согласно наблюдениям и моделям, звёзды в семь и более раз массивнее нашего Солнца не должны обладать магнитными полями. Несмотря на это, около 7 % массивных звёзд имеют сильные магнитные поля, что долгие годы было поводом для научных дискуссий. Серия новых наблюдений европейских астрономов позволяет уверенно разгадать эту загадку. Всему виной «звёздный каннибализм», считают они.

 Источник изображения: ESO/VPHAS+

Источник изображения: ESO/VPHAS+

Исследователи обратили внимание на необычную двойную звёздную систему HD 148937 на удалении 3800 световых лет от нас. Внутри красивой туманности, прозванной «Яйцо дракона», вокруг общего центра масс вращается две звезды: одна в 29,9 солнечных масс, а другая — 26,6 солнечных масс. Изучение химического состава этих звёзд по спектрам, полученным приборами Очень большого телескопа Южной европейской обсерватории, выявило несуразность. По химическим профилям звёзд выходило, что более массивному светилу 2,7 млн лет, а меньшему — 4,1 млн. Так не бывает, а значит что чуть раньше с этими звёздами что-то произошло.

Также необычным можно считать наличие туманности вокруг звёзд, возраст которой оценивается от 4 до 7,5 тыс. лет. Наконец, химический состав вещества туманности тоже нетипичный. В нём преобладают вещества, которые обычно находятся внутри звёзд. Всё вместе позволило восстановить последовательность событий.

С большой вероятностью система HD 148937 состояла как минимум из трёх звёзд. Две из них, можно сказать, центральные, столкнулись не более чем 7 тыс. лет назад. Это повлекло за собой три обнаруживаемых эффекта. Во-первых, химический состав звезды-каннибала или выжившей звезды изменился, до некоторой степени омолодив её. Во-вторых, вокруг системы образовалась туманность из выброшенного в процессе столкновения вещества обеих звёзд. В-третьих, внутри звезды-каннибала в процессе поглощения партнёра стартовали мощные конвективные потоки вещества, что привело к генерации сильного магнитного поля.

В теории магнитное поле у сверхмассивной звезды со временем должно затухнуть, но поскольку поглощение произошло относительно недавно, оно всё ещё очень сильное и вызывает удивление. С другой стороны, учёные получили убедительное доказательство фактора приобретения магнитных полей сверхмассивными звёздами, что может положить конец затянувшейся дискуссии по этому поводу. Впрочем, одного наблюдения явно не достаточно, поэтому астрономы продолжат изучать системы с похожим набором свойств.

Обнаружен объект из необъяснимого провала масс между нейтронными звёздами и лёгкими чёрными дырами — его засекли детекторы LIGO

5 апреля опубликованы первые данные нового цикла наблюдений коллаборации LIGO-Virgo-KAGRA, стартовавшего год назад. Первым достоверно подтверждённым событием стал гравитационно-волновой сигнал GW230529. Это событие оказалось уникальным и вторым подобным за всю историю работы детекторов. Один из объектов гравитационного взаимодействия оказался из так называемого разрыва масс между нейтронными звёздами и лёгкими чёрными дырами, а это новая загадка.

 Художественное представление рзрыва нейтиронной звезды чёрной дырой. Источник изображения: Max Planck Institute for Gravitational Physics

Художественное представление разрыва нейтронной звезды чёрной дырой. Источник изображения: Max Planck Institute for Gravitational Physics

Согласно данным гравитационно-волновых детекторов LIGO, событие GW230529 представляет собой взаимодействие двух объектов — одного массой 1,2–2,0 солнечных масс, а второго — более чем в два раза массивнее (2,5–4,5 солнечных масс). Первый компактный объект определён как нейтронная звезда, а второй попал в диапазон масс, в котором ничего не должно находиться. Выше разрыва учёные находили лёгкие чёрные дыры, а ниже — нет. Также в этот диапазон не могут попасть нейтронные звёзды. Остаётся предположить, что учёные открыли легчайшую чёрную дыру, что стало вызовом для современной астрофизики.

В одно из предыдущих наблюдений детекторами LIGO-Virgo подобный объект промежуточной массы уже наблюдался — это сигнал GW190814. Но тогда, в 2019 году, был получен сигнал об объекте из нижнего диапазона разрыва масс, что заставило заподозрить в нём тяжелейшую нейтронную звезду. Сигнал GW230529 подбросил новую загадку, но одна только гравитационно-волновая обсерватория её не решит. Для этого нужны наблюдения в других диапазонах.

Кстати, сигнал GW230529 был обнаружен только обсерваторией LIGO. Обсерватория Virgo в Италии и KAGRA в Японии данных не увидели, поэтому определение направления на событие затруднено. В то же время обнаружение сигнала на одном детекторе стало проверкой нового программного обеспечения, которое успешно отфильтровало шум и вычленило полезный и, как оказалось, уникальный сигнал.

В январе обсерватории были остановлены на плановое обслуживание и модернизацию. Обсерватория в Японии подверглась землетрясению и вынуждена была встать на ремонт. Новый сеанс наблюдения начнётся 10 апреля и продлится до февраля 2025 года. В первый цикл было зафиксировано 81 событие, данные по первому из них — GW230529 — опубликованы. Всего по окончанию цикла ожидается регистрация свыше 200 гравитационно-волновых событий.

Учёные впервые засекли джет нейтронной звезды, разогнанный до 40 % скорости света

Вселенная полна «ускорителями для бедных», как академик Яков Зельдович назвал энергичные космические явления. Ряд процессов мы никогда не сможем воссоздать в земных лабораториях, куда входят также события, связанные с нейтронными звёздами. Всё это можно изучать со стороны и сейчас такие наблюдения принесли новый успех — впервые учёные зафиксировали струю выброса вещества с нейтронной звезды, скорость которого достигла 40 % от скорости света.

 Художественное представлние нейтронной звезды. Источник изображения: ЕКА

Художественное представление нейтронной звезды. Источник изображения: ЕКА

Открытие помогли сделать массив радиотелескопов Compact Array в Австралии и европейский рентгеновский спутник Integral (совместный проект ЕКА с «Роскосмосом» и NASA). Джеты и рассеяние вещества в процессе взаимодействия со струёй от нейтронной звезды видны только в этих диапазонах, а также в гамма-диапазоне. Другим условием было наличие у нейтронной звезды партнёра — обычной звезды, у которого она могла бы отнимать вещество для инициации джетов.

Силой своей гравитации нейтронные звёзды уступают только чёрным дырам. Если это двойная система из нейтронной звезды и обычной звезды, то вещество от последней (как правило, это водород) перетекает на нейтронную звезду, за что их иногда называют звёздными каннибалами. Концентрация и уплотнение водорода на поверхности нейтронной звезды приводит к запуску термоядерной реакции и взрыву, который и порождает джет — выброс энергии и вещества. Попутно в джет вовлекается окружающее нейтронную звезду вещество из пространства и ускоряется им, начиная светиться в рентгеновском и гамма-диапазоне.

Проблема с наблюдением таких явлений в том, что джеты возникают не по расписанию, а произвольно. Поэтому учёным приходится часами и даже сутками следить за нейтронными звёздами, в надежде собрать наиболее полную информацию по событию. Должно совпасть множество факторов, включая положение обсерваторий.

Международная группа астрофизиков из Университета Уорика (Великобритания), Национального института астрофизики в Палермо (Италия) и Амстердамского университета в Нидерландах добилась своего и смогла в деталях запечатлеть явление в «идеальном», как сообщили учёные в журнале Nature, эксперименте. Они зафиксировали не только процесс образования джета, но также захват струёй вещества из окружающего пространства и его разгон до скорости 35–40 % от скорости света (примерно 114 тыс. км/с).

По словам исследователей, это самый быстрый джет из наблюдавшихся. Также учёные отметили, что создавший струю термоядерный взрыв, по-видимому, не разрушил локацию, где он произошёл, а лишь вовлёк в струю массу вещества, синтезированного звездой. Тем самым подобные процессы очевидным образом влияют как на распространение более тяжёлых элементов по Вселенной, так и непосредственно на процессы звездообразования.

Учёные впервые взорвали нейтронную звезду в трёхмерной симуляции на суперкомпьютере

У Вселенной много загадок для человечества, среди которых нейтронные звёзды занимают особое положение. Это настолько плотные объекты, что в них есть место даже для новой физики. И хотя мы не сможем к ним приблизиться, учёным доступны наблюдения и компьютерное моделирование. Подгоняя симуляцию под наблюдения можно раскрыть множество секретов нейтронных звёзд.

 Источник изображений: Zingale et al., ApJ, 2024

Источник изображений: Zingale et al., ApJ, 2024

Столкновения нейтронных звёзд в двойных системах порождают термоядерные взрывы, когда часть вещества перетекает на другую звезду и запускается термоядерная реакция. Это очень мощные явления, которые астрономы фиксируют в гамма- и рентгеновском диапазоне. Силу вспышки и её динамику можно оценить количественно и затем использовать в расчётах для воспроизведения условий для её возникновения. Если расчёты совпадают с увиденным, значит, появляется простор для уточнения массы нюансов поведения нейтронных звёзд. Необходимые детали можно получить из моделирования, даже если мы никогда не получим непосредственного подтверждения симуляции наблюдениями.

Ранее в Ок-Риджской национальной лаборатории на суперкомпьютере Summit учёные исследовали термоядерное воспламенение нейтронной звезды в 2D-проекции. Для объёмной симуляции процесса необходимы намного большие машинные ресурсы, и они были выделены. В новом исследовании была проведена первая в мире подробная 3D-симуляция термоядерного воспламенения нейтронной звезды.

«С помощью симуляции мы можем увидеть, как эти события происходят в мельчайших деталях, — поясняют авторы работы, опубликованной в журнале The Astrophysical Journal. — Одна из вещей, которую мы хотим сделать, это понять свойства нейтронной звезды, потому что мы хотим выяснить, как ведёт себя материя при экстремальных плотностях, которые вы обнаружили бы в нейтронной звезде».

В среднем диаметр нейтронных звёзд достигает 20 км. При этом её масса — это масса ядра бывшей звезды, превратившейся в сверхновую — может достигать двух масс Солнца. Собственной массы ядра не хватило, чтобы оно коллапсировало в чёрную дыру, но оставшись материальным телом, настолько спрессовало вещество в себе, что его плотность достигла невообразимых значений. Таких, что атомы вещества в центре нейтронных звёзд могут находиться в разобранном на кварки состоянии или ещё до каких-то неизвестных нам уровней.

 Слева изображения симуляции термоядерного взрыва на нейтронной звезде в 2D, справа — в 3D

Слева изображения симуляции термоядерного взрыва на нейтронной звезде в 2D, справа — в 3D

Моделирование позволяет выявлять нюансы физики нейтронных звёзд, чтобы установить ограничения на те или иные явления и процессы. Наконец, это может помочь создать модель внутренней физики этих объектов. Запуск 3D-модели термоядерного взрыва на нейтронной звезде показал несколько другие результаты, чем во время запуска 2D-модели. Это позволит сделать поправку на исследование процесса в 2D. Это важно по той причине, что запуск в 2D требует гораздо меньше вычислительных ресурсов и происходит быстрее.

В то же время запуск симуляции в 3D раскрыл новые грани процесса распространения термоядерной реакции по поверхности нейтронной звезды. Пока учёные смогли запустить моделирование лишь в районе одного полюса объекта, но приближаются к моделированию явления в масштабах всей звезды от полюса к полюсу.

Cверхмассивная чёрная дыра разорвала звезду в относительной близости от Земли

Учёные Института астрономии при Гавайском университете доложили, что им удалось зафиксировать событие приливного разрушения (TDE) звезды сверхмассивной чёрной дырой, которая находится в центре галактики NGC 3799. Эта галактика характеризуется активным звездорождением, располагается в 160 млн световых лет от Земли и наблюдается в созвездии Льва.

 Иллюстрация спагеттификации звезды сверхмассивной чёрной дырой. Источник изображения: hawaii.edu

Иллюстрация спагеттификации звезды сверхмассивной чёрной дырой. Источник изображения: hawaii.edu

Открытие было сделано 22 февраля 2023 года с помощью системы ASAS-SN, предназначенной для поиска сверхновых, когда исследователи заметили внезапное прояснение и быстрое затухание спиральной галактики с перемычкой, где произошло событие. TDE возникает, когда звезда слишком близко подходит к сверхмассивной чёрной дыре — такие чёрные дыры находятся в центре многих крупных галактик и имеют массы в миллионы или даже миллиарды солнечных. Гравитация сверхмасисвной чёрной дыры порождает колоссальные приливные силы, которые вытягивают звезду — она превращается в космическую лапшу из звёздного вещества и обвивает чёрную дыру как спагетти на вилке. После этого процесса, называемого спагеттификацией, разрушенная звезда постепенно падает в чёрную дыру. Параллельно создаются яркие вспышки, которые можно увидеть на Земле.

Эти события довольно распространены, но обнаружить TDE в относительной близости к Земле получается очень нечасто. Поэтому произошедшее в галактике NGC 3799 событие, которому было присвоено обозначение ASASSN-23bd, оказалось приоритетным для исследователей. Были проведены дополнительные наблюдения при помощи телескопов системы ATLAS, предназначенной для оповещения о приближении астероидов, а также обсерватории Кека. Выяснилось, что ASASSN-23bd выделяется среди TDE не только своей близостью к Земле: событие породило яркий всплеск всего на 15 дней, то есть оно прошло примерно вдвое быстрее, чем ему подобные. Кроме того, в результате было произведено значительно меньше энергии, чем обычно. В результате событие отнесли к категории «быстрых TDE с низкой светимостью».

«Джеймс Уэбб» нашёл лучшее доказательство существования нейтронных звёзд

Нейтронные звёзды обнаружить ничуть не легче, чем чёрные дыры. Они тоже темны, но к тому же очень компактны. Все обнаруженные ранее нейтронные звёзды определены по косвенным признакам и нашим моделям. Телескоп «Уэбб» вплотную подобрался к обнаружению нейтронной звёзды, являющейся останками взрыва сверхновой.

 Источник изображения: NASA

Источник изображения: NASA

Сразу после ввода телескопа в строй летом 2022 года учёные начали следить за останками сверхновой 1987A. Это близкий к нам объект всего в 160 тыс. световых лет. Сверхновая вспыхнула в феврале 1987 года и к маю стала видна на Земле даже невооруженным глазом. Это первая такая яркая сверхновая с 1604 года (со времён сверхновой Кеплера).

За два часа до обнаружения сверхновой в оптическом диапазоне три земных нейтринных обсерватории зафиксировали короткий всплеск нейтрино от объекта в том же месте пространства. Расчёты показали, что сверхновая, скорее всего, закончит своё существование нейтронной звездой, а не чёрной дырой. Однако твёрдых доказательств этому не было, и учёные все последующие 40 лет следили за сверхновой 1987A в надежде получить больше данных для уточнения моделей терминальной стадии эволюции звёзд.

Обсерватория им. Джеймса Уэбба получила лучшие доказательства в пользу образования после взрыва сверхновой 1987A нейтронной звезды, а не чёрной дыры. На снимке выше слева можно увидеть изображение останков сверхновой 1987A, сделанные камерой NIRCam телескопа. Справа вверху данные прибора MIRI показывают однократно ионизированный аргон вокруг предполагаемой нейтронной звезды (атомы аргона потеряли по одному электрону под воздействием ионизирующего излучения нейтронной звезды).

Справа внизу показан снимок многократно ионизированного аргона, полученный прибором NIRSpec «Уэбба» (атомы аргона потеряли до пяти электронов каждый). Ионизация аргона означает, что компактный объект в центре излучает высокоэнергичные фотоны, которые выбивают электроны из окружающего объект газового облака. На основании наших знаний об эволюции звёзд с большой вероятностью можно предположить, что в центре останков сверхновой 1987A находится нейтронная звезда, а не чёрная дыра, что на сегодня стало лучшим доказательством существования нейтронных звёзд. На этом работа по объекту не прекратится. Открытие придало исследованиям ещё больше смысла.

Учёные заподозрили магнетар в вулканической активности

В нашей родной галактике обнаружен один-единственный магнетар, который испускает короткие радиовсплески, природа которых до сих пор остаётся предметом научных дискуссий. Относительная близость к нам магнетара SGR 1935 + 2154 даёт учёным надежду разгадать секреты этих объектов, и шаг в этом направлении уже совершён.

 Художественное представление выброса вещества из нейтронной звезды (линии магнитного поля показаны зелёным). Источник изображения: NASA/JPL-Caltech

Художественное представление выброса вещества из нейтронной звезды (линии магнитного поля показаны зелёным). Источник изображения: NASA/JPL-Caltech

Магнетар SGR 1935 + 2154 в 30 тыс. световых годах от Земли впервые выдал зарегистрированный нашими приборами радиовсплеск в 2020 году. Повторный сигнал возник в октябре 2022 года. Специалистам NASA удалось оперативно отреагировать на второе событие и направить в сторону источника два научных прибора: размещённый на МКС NICER для исследования внутреннего состава нейтронных звезд и орбитальный NuSTAR для ядерной спектроскопии. Результаты наблюдений настолько удивили учёных, что они стали предметом серьёзной научной работы, опубликованной в журнале Nature 14 февраля.

Следует отметить, что магнетары — окружённые сильнейшими магнитными полями нейтронные звёзды диаметром около 20 км, оставшиеся после взрыва сверхновых — вращаются очень и очень быстро. Средняя скорость вращения SGR 1935 + 2154 составляет чуть больше 3 оборотов в секунду. Испускаемые ими радиовсплески сопровождаются колоссальными выбросами энергии, наблюдаемыми также в рентгеновском и гамма-диапазоне. За долю секунды высвобождается энергия, которую наше Солнце отдаёт в течение одного года, а иногда и больше.

Подобные выбросы энергии способны изменить скорость вращения нейтронной звезды, и они её изменяют. Что провоцирует эти процессы — остаётся в области гипотез. Например, это могут быть крупные астероиды, ударяющие в нейтронную звезду по направлению вращения и против него. Также учёные считают возможным явления звездотрясения, которые вызывают колебания поверхности звезды с последующими переключениями силовых линий магнитного поля.

Наблюдение радиовсплеска в октябре 2022 года позволило заподозрить ещё одну причину возникновения этих явлений. Быстрая реакция на событие и его изучение одновременно двумя разными приборами показало, что магнетар снизил скорость вращения в 100 раз быстрее, чем в случае всех предыдущих наблюдений. Снижение скорости произошло всего за 9 часов, тогда как ранее на это уходили недели и даже месяцы. Что-то ускорило этот процесс, и это должно было быть что-то новое.

В своей работе учёные доказывают, что магнетар мог выбросить в космос вещество подобно процессу вулканической деятельности. Сверхплотные недра нейтронной звезды должны существовать в состоянии сверхтекучести. Благодаря этому «жидкость» может плескаться внутри звезды и передать ей импульс, который был бы способен взломать кору и произвести извержение. Сильнейшие магнитные поля магнетара придали бы этому извержению дополнительный импульс, и образовалось бы что-то типа реактивной струи, которая могла бы в кратчайшие сроки придать нейтронной звезде ускорение или торможение.

По мнению исследователей, они нащупали нечто новое в поведении магнетаров и намерены плотнее заняться изучением вопроса, что обещает, наконец, разгадать тайну рождения коротких радиовсплесков магнетаров.

На краю нашей галактики нашли загадочный объект, природа которого выходит за рамки знаний человечества

Группа астрономов из Манчестерского университета обнаружила на краю нашей галактики объект, который учёные затруднились идентифицировать. Находка является тусклой и не видна в обычные телескопы. Найти загадочное нечто удалось по наблюдению за пульсаром, на орбите которого объект расположен. Проблема в том, что масса неизвестного объекта выходит за рамки наших знаний о нейтронных звёздах и чёрных дырах. И одни и другие с такой массой ещё не встречались.

 Двойная система из пульсара и чёрной дыры в представлении художника. Источник изображения: Daniëlle Futselaar

Двойная система из пульсара и чёрной дыры в представлении художника. Источник изображения: Daniëlle Futselaar

Почему это важно? Если загадочный объект окажется нейтронной звездой, то это откроет путь к новой физике. Его масса лежит в пределах 2,09–2,71 солнечных масс. Теоретически нейтронная звезда не может быть тяжелее 2,3 масс Солнца, но в верхней части диапазона открытий таких объектов либо нет, либо они малодостоверные. Насколько мы понимаем физику процесса, более тяжёлые нейтронные звёзды коллапсируют в чёрные дыры. Если же такие звёзды существуют, то там происходят такие процессы, о которых мы не знаем, вплоть до существования каких-то иных элементарных частиц.

С другой стороны, мы ещё не открывали чёрных дыр массой менее 5 солнечных и с подтверждением открытий в нижней части диапазона массы этих объектов тоже не всё однозначно. Поэтому если загадочный объект окажется чёрной дырой, то это будет легчайшая чёрная дыра за всё время наблюдений. Это не разрушит основы физики, но даст пищу для множества научных теорий.

Учёные не сомневаются в достоверности параметров открытого ими объекта. Он обнаружен на орбите пульсара PSR J0514-4002E, излучающего сверхкороткие радиоимпульсы (миллисекундной длительности), и это позволило с высочайшей точностью рассчитать массу системы и массу каждого из объектов: пульсара и пока непонятно чего.

 Симуляция возможной конфигурации загадочной двойной системы. Источник изображения: OzGrav, Swinburne University of Technology

Симуляция вероятной конфигурации загадочной двойной системы. Источник изображения: OzGrav, Swinburne University of Technology

Система расположена в звёздном скоплении NGC 1851 примерно в 54 тыс. световых годах от центра галактики Млечный Путь. Сбором данных занимался массив радиотелескопа MeerKAT в Южной Африке. Неизвестное тело совершает один орбитальный оборот за 7,44 суток. Учёные намерены приложить все усилия, чтобы узнать его природу. Вне зависимости от идентификации объекта, открытие обещает оказаться значимым для науки.

Астрономы впервые обнаружили аккрецирующий диск вокруг молодой звезды в другой галактике

В соседней с нами галактике Большое Магелланово Облако астрономы впервые смогли разглядеть диск газа вокруг молодой и растущей звезды. Эта галактика удалена от нас на 160 тыс. световых лет и это открытие кажется чудом, тем более, что облака пыли и газа редко дают нам увидеть такие явления даже у себя под носом в нашей галактике. И это невероятно удачный случай, позволяющий изучить похожие процессы эволюции звёзд в иных галактических условиях.

 Джет и газовый аккецирующий диск у юной звезды в представлении художника. Источник изображения: ESO\ALMA

Джет и газовый аккрецирующий диск у юной звезды в представлении художника. Источник изображения: ESO\ALMA

Открытие сделано массивом антенных решёток ALMA в Чили и подтверждено спектрометром MUSE на телескопе VLT Южной европейской обсерватории (оба комплекса расположены в чилийской пустыне Атакама). Это оказался первый случай, когда за пределами Млечного Пути наблюдалось явление, ранее встречавшееся астрономам лишь в нашей галактике. Из таких газовых дисков вокруг молодых звёзд обычно формируются планеты, и изредка вещество диска питает саму звезду, что было выявлено также в случае сделанного открытия.

«Когда я впервые увидела свидетельства наличия вращающейся структуры в данных ALMA, я не могла поверить, что мы обнаружили первый внегалактический аккреционный диск. Это был особенный момент, — поделилась Анна Маклеод (Anna McLeod), доцент Даремского университета (Великобритания) и ведущий автор исследования, опубликованного в журнале Nature. — Мы знаем, что диски играют важную роль в формировании звёзд и планет в нашей галактике, и вот впервые мы видим прямое доказательство этого в другой галактике».

Толчком к открытию стало обнаружение спектрометром MUSE джета от формирующейся молодой звезды в глубине Большого Магелланового Облака, после чего системе был присвоен идентификатор HH 1177. Наличие джета у молодой звезды говорит, что на неё продолжает падать вещество, а это означает, что там должен присутствовать сформированный газовый диск, роняющий это самое вещество. Но для подтверждения существования газового диска требовалось измерить движение газа вокруг звезды.

Ближе к центру диск вращается быстрее, и эта разница в скорости и есть тот самый факт, который указывает астрономам на наличие аккреционного диска. Узнать скорость позволяет измерение частоты излучения от внутренней и внешней области газового диска, для чего массив ALMA подошёл на все 100 процентов. И в данных массива учёные эту информацию нашли. У молодой звезды в другой галактике действительно оказался аккрецирующий газовый диск, который не только в будущем сформирует там планеты, но он ещё и питал звезду, увеличивая её в размерах.

Почему пыль и газ не скрыли от нас эту картину? Учёные считают, что нам повезло увидеть формирование звезды в системе с небольшим содержанием металлов. В ней оказалось больше прозрачного газа, чем пыли, поэтому мы сумели разглядеть сокровенные процессы младенчества звезды и системы аж в соседней галактике.

Астрономы обнаружили недалеко от нас звёздную систему с шестью субнептунами в резонансе — это редкость

Международная группа исследователей при помощи космических телескопов TESS и «Хеопс» разгадала загадку редкой звёздной системы с шестью планетами — она располагается в ста световых годах от Земли, а её изучение поможет раскрыть новые тайны, связанные с формированием планет.

 Источник изображений: esa.int

Источник изображений: esa.int

В центре звёздной системы находится похожая на солнце звезда под названием HD110067, а наблюдается она в созвездии Волосы Вероники. Вокруг неё вращаются шесть планет больше Земли, но меньше Нептуна — субнептуны, которые часто встречаются на орбитах солнцеподобных звёзд во Млечном Пути. Планеты, обозначенные буквами от b до g, вращаются в орбитальном резонансе. На каждые шесть витков планеты b, ближайшей к звезде, планета g совершает ровно один оборот. Пока планета c делает три оборота вокруг звезды, планета d делает два. А когда планета e совершает четыре оборота, планета f делает три. Этот гармонический ритм создаёт резонансную цепочку, в которой все они иногда выстраиваются в ряд. Звёздная система сформировалась около миллиарда лет назад, за прошедшее время в ней изменилось очень немногое, и это открытие может пролить свет на эволюцию планет и происхождение распространённых в нашей галактике субнептунов.

Исследователи впервые обратили внимание на эту звёздную систему в 2020 году, когда американский космический телескоп TESS зафиксировал снижение яркости HD110067, что часто свидетельствует о прохождении планеты по диску звезды. На основе полученных в 2020 году данных учёные определили периоды обращения двух планет в этой звёздной системе. Спустя два года TESS снова наблюдал за этой звездой, и его данные показали другие орбитальные периоды планет. Когда данные не сошлись, исследователи решили продолжить наблюдение на другом телескопе — выбор пал на европейский «Хеопс» (CHaracterising ExOPlanet Satellite — CHEOPS), который позволяет наблюдать по одной звезде за раз, тогда как TESS охватывает сразу целый участок неба. При помощи «Хеопса» удалось открыть третью планету, а дельнейшее сопоставление данных его наблюдения с информацией TESS позволило установить присутствие и трёх остальных.

Ближайшая к звезде планета совершает вокруг неё оборот за 9 земных дней, а самой дальней требуется 55. Для сравнения, ближайшая к нашему Солнцу планета Меркурий делает оборот вокруг звезды за 88 земных дней. Учитывая, насколько близки планеты к HD110067, их средние температуры, вероятно, близки к температурам Меркурия и Венеры — согласно оценкам, их диапазон составляет от 167 до 527 °C.

Формирование звёздных систем традиционно характеризуется как достаточно агрессивный процесс. Астрономы считают, что первоначально планеты имеют тенденцию формироваться в резонансе вокруг своих звёзд, но впоследствии гармоническое равновесие нарушается гравитационным влиянием массивных планет, а также столкновениями со звездой и другими объектами. Большинство звёздных систем не находится в резонансе, а системы с несколькими планетами, сохранившие свои первоначальные ритмы, являются большой редкостью, поэтому исследователи хотят детально изучить HD110067 и её планеты. Они считают, что первозданный резонанс сохраняют не более 1 % систем. Всего известны лишь три такие системы с шестью планетами, и две из них за три года своей работы обнаружил «Хеопс» — первой была TOI-178, о которой объявили в 2021 году.

Известна также система TRAPPIST-1, в которой семь планет вращаются вокруг красного карлика — она имеет резонансную цепочку, но наблюдение за ней затруднено из-за небольшой яркости звезды. А вот HD110067 с массой в 80 % солнечной является самой яркой известной звездой, на орбите которой более четырёх планет. Особую ценность системе придают обращающихся вокруг неё шесть субнептунов — они достаточно распространены в нашей галактике, но в Солнечной системе таких планет нет; у астрономов отсутствует единое мнение об их формировании о составе, что придаёт изучению HD110067 большое значение. Первоначальные данные о массе этих планет позволяют предположить, что некоторые из них обладают объёмной, богатой водородом атмосферой, а значит, их можно будет изучать при помощи телескопа «Джеймс Уэбб» (JWST): звёздный свет проникает через их атмосферу, и космическая обсерватория поможет определить состав каждой планеты.

Гибель Земли от сближения с блуждающей звездой через 29 тыс. лет отменяется — в данные телескопа закралась ошибка

Астрономы Южной европейской обсерватории заново измерили астрометрические характеристики белого карлика WD 0810-353, который, по данным телескопа «Гайя», должен был влететь в облако Оорта через 29 тыс. лет. Сама звезда пролетела бы далеко от Земли, но вызванные ею возмущения обрушили бы на центр Солнечной системы ливень из астероидов и комет, что могло закончиться для нашей планеты очень плохо. К счастью, «Гайя» ошиблась. Этой катастрофы не будет.

 Источник изображения: ESO/L. Calçada

Траектория гипотетического объекта из облака Оорта. Источник изображения: ESO/L. Calçada

Угрозу для Земли со стороны блуждающей звезды обнаружили российские астрономы из Пулковской обсерватории Вадим Бобылев и Аниса Байкова. Это произошло в текущем году. Европейский астрометрический спутник «Гайя» (Gaia), напомним, измеряет точные характеристики звёзд, включая их радиальную скорость, что даёт возможность строить трёхмерную динамическую звёздную карту нашей галактики и даже несколько за её пределами.

Изучая спектр белого карлика (WD 0810-353), Бобылев и Байкова сделали заключение, что звезда, находящаяся от нас на удалении 36 световых лет, движется наперехват Солнечной системе и через 29 тыс. лет пролетит на удалении 31 000 а.е (4,6 трлн км) от Солнца. С одной стороны, это очень далеко от нас, но проблема в том, что звезда нарушит равновесие облака Оорта — огромного скопления астероидов и комет за границами системы. С учётом массы белого карлика, которая оценивается на как треть меньше нашего Солнца, вовнутрь может полететь множество камней и даже может возникнуть эффект лавины.

Группа астрономов из Южной европейской обсерватории предположила, что в данные «Гайи» вкралась ошибка. На снятые приборами спутника спектральные характеристики белого карлика могло оказать влияние магнитное поле звезды, которое сместило линии в синюю сторону спектра (это означает движение звезды в нашу сторону, тогда как смещение в красную сторону указало бы на движение прочь от нас).

Для устранения возможной помехи звезда WD 0810-353 была изучена наземным телескопом с использованием фильтров. Оказалось, что измеренная «Гайей» скорость сближения звезды и Солнечной системы действительно ошибочная. Более того, звезда вообще может не лететь в нашу сторону. Это радует, хотя теперь возникли вопросы к другим измерениям по программе «Гайи».

Загадочный быстрый радиовсплеск из глубин Вселенной вышел за пределы известных теорий

Международная группа исследователей обнаружила быстрый радиовсплеск, который не может быть объяснён современными теориями. Впервые подобные сигналы зарегистрированы в 2007 году и всё ещё ждут своего объяснения. Некоторые даже считали их сигналами инопланетян, но эта теория не возобладала. Новый и необычный по силе и удалённости радиовсплеск задаёт новую загадку, и разгадать её означает продвинуться в познании тайн Вселенной.

 Источник изображения: Pixabay

Источник изображения: Pixabay

Событие FRB 20220610A было зарегистрировано в июне 2022 года с помощью расположенного в Австралии массива радиоантенн ASKAP (Australian Square Kilometer Array Pathfinder). Поиск в оптическом диапазоне с помощью телескопа VLT определил источник радиовсплеска — безымянную галактику, расположенную на удалении почти 8 млрд световых лет. Это стало сенсацией по целому ряду причин.

Ещё никто не регистрировал FRB (fast radio burst) так далеко. Мощность сигнала также оказалась рекордной и в 3,5 раза превысила ранее зафиксированный максимум. За несколько миллисекунд события в космос была отправлена энергия, эквивалентная сумме всех энергетических выбросов с нашего Солнца за 30 лет.

Согласно одной из теорий, быстрые радиовсплески возникают в процессе «звездотрясений». Испускающая сигнал нейтронная звезда производит его из-за смещений в своей коре, которая испытывает колоссальное давление и оттого наделяет импульс невообразимой энергией. Однако подобные процессы накладывают ограничения на яркость события, а FRB 20220610A многократно превысил все расчётные значения.

Другая теория гласит, что быстрые радиовсплески возникают в процессе столкновения высокоскоростных частиц, выброшенных нейтронными звёздами, с окружающим их веществом в звёздном ветре. Но данные по FRB 20220610A также выходят за рамки этой модели, и учёным есть над чем поломать голову.

Но и это ещё не всё. Быстрый радиовсплеск FRB 20220610A может оказать неоценимую помощь для поиска невидимого обычного вещества во Вселенной — холодных межзвёздных газа и пыли, которые не видны в оптическом диапазоне и плохо фиксируются в других, особенно на огромном от нас удалении.

 Разница в спектре свободно летящего сигнала и сигнала, пробивающегося сквозь облака барионного вещества.Источник изображения: ICRAR

Разница в спектре свободно летящего сигнала и сигнала, пробивающегося сквозь облака барионного вещества. Источник изображения: ICRAR

Дело в том, что в процессе распространения по Вселенной по мере прохождения облаков пыли и газа, радиосигнал, скажем так, расщепляется. Это похоже на появление радуги в небе, когда свет Солнца преломляется в каплях дождя. Разные длины волн отклоняются на разную величину в процессе прохождения облаков пыли и газа, которые имеют собственный электромагнитный фон и естественным образом воздействуют на электромагнитные волны в быстром радиовсплеске. Для FRB 20220610A разброс оказался нетипичным, хотя ранее подобное уже один раз фиксировалось.

Это означает, что учёным придётся учесть новый фактор при детектировании холодного межзвёздного вещества с помощью FRB. Эта «линейка» оказалась не так проста, как считалось ранее. Но тем важнее учесть все нюансы. Чем точнее будет наша математика, тем больше мы узнаем о мире, в котором живём.

Учёные объяснили быстрые радиовсплески «звездотрясениями»

По крайней мере некоторые из быстрых радиовсплесков могут быть вызваны «звездотрясениями», возникающими «на поверхности нейтронных звёзд», утверждают учёные Токийского университета в новой работе.

 Источник изображений: wikipedia.org

Источник изображений: wikipedia.org

Быстрый радиовсплеск (Fast Radio Bursts, FRB) представляет собой внезапный импульс радиочастотного излучения, который продолжается всего несколько микросекунд. С момента первого обнаружения в 2007 году астрономы зафиксировали уже тысячи таких событий: одни источники испускают их регулярно, другие же производят их один раз и замолкают.

Распространёнными источниками регулярных радиовсплесков являются пульсары и магнетары — нейтронные звёзды, то есть схлопнувшиеся плотные ядра некогда массивных звёзд, чья масса теперь сравнима с солнечной при диаметре в десятки километров. Пульсары вращаются с частотой в несколько сотен оборотов в секунду, а их магнитное поле наклонено к оси вращения, из-за чего возникает излучение. Магнетары вращаются медленнее, но обладают самыми сильными во Вселенной магнитными полями — в триллионы раз сильнее земного.

В 2020 году телескоп CHIME (Canadian Hydrogen Intensity Mapping Experiment) зафиксировал событие, похожее на FRB, но всплеск исходил от SGR 1935+2154 — «источника регулярного мягкого гамма-излучения». Событие подтвердил телескоп STARE2 (Survey for Transient Astronomical Radio Emission 2), и предположение, что FRB мог быть произведён магнетаром, представлялось многообещающим.

Учёные также зафиксировали несколько FRB, которые больше не повторялись, и предположили, что их источник был уничтожен. Таким источником мог быть блицар — причудливое астрономическое событие, связанное с коллапсом излишне массивной нейтронной звезды в чёрную дыру. Это событие возникает при слиянии двух нейтронных звёзд — оно образует слишком крупную нейтронную звезду, которую удерживает от немедленного коллапса только быстрое вращение. Но вращение замедляется из-за сильных магнитных полей, объект коллапсирует в чёрную дыру, а энергия магнитных полей высвобождается в виде FRB.

 Первый зафиксированный в 2007 году быстрый радиовсплеск

Первый зафиксированный в 2007 году быстрый радиовсплеск

В 2022 году астрономы при помощи телескопа CHIME обнаружили FRB, который был зафиксирован как единичное событие, но на самом деле состоял из девяти отдельных всплесков, повторявшихся примерно каждые 215 мс, а его источник находился предположительно вблизи поверхности магнетара. По одной из версий, звезда вращалась медленно, а событие было порождено вибрациями её коры, то есть «звездотрясением». Учёные токийского университета решили сравнить статистику FRB с данными о землетрясениях и солнечных вспышках, чтобы установить возможные сходства. Для этого были изучены 7000 сигналов от трёх источников повторяющихся FRB, чтобы учесть корреляцию между другими подобными событиями — тот же подход был использован при установке корреляции по времени и энергии землетрясений и солнечных вспышек для последующего анализа всех трёх явлений.

Как выяснилось, между FRB и землетрясениями действительно есть некоторые сходства. В частности, вероятность афтершока после одиночного события составляет от 10 % до 50 %. Частота афтершоков остаётся постоянной величиной, даже если активность FRB и землетрясения существенно меняется — при этом корреляция между энергиями основного толчка и афтершоков отсутствует. Исследователи планируют и дальше анализировать новые данные FRB, но уже полученные ими результаты указывают, что нейтронные звёзды могут иметь твёрдую кору, склонную к «звездотрясениям», при которых выделяется огромное количество энергии в виде FRB.

Астрономы говорят, что их проект поможет больше узнать как о землетрясениях, хотя условия на далёких сверхплотных звёздах и кардинально отличаются от земных; так и о материи очень высокой плотности, а также о фундаментальных законах ядерной физики.

Рискованный манёвр позволил разгадать 65-летний секрет невероятно высокой температуры короны Солнца

Учёные приблизились к тому, чтобы понять причины невероятно высокой температуры атмосферы Солнца, достигающей миллиона градусов, что в 150 раз превышает температуру поверхности звезды. Благодаря уникальному сотрудничеству космических аппаратов Solar Orbiter и Parker Solar Probe, а также необычному манёвру последнего, учёные получили данные, способные пролить свет на эту загадку космических масштабов возрастом 65 лет.

 Источник изображения: ESA / NASA

Источник изображения: ESA / NASA

Солнечная корона — внешний, самый разреженный и горячий слой атмосферы Солнца, состоящий из плазмы, давно интригует учёных своей аномальной температурой, достигающей миллиона градусов по Цельсию. Это в 150 раз больше, чем температура поверхности самой звезды. Такое явление казалось нелогичным, ведь чем дальше от источника тепла, тем холоднее должно быть.

Для разгадки этой тайны учёные обратили внимание на процесс турбулентности, который, как предполагается, играет ключевую роль в нагреве короны Солнца. Этот процесс можно сравнить с перемешиванием кофе в чашке: в результате турбулентных движений энергия переходит от больших масштабов к меньшим, вплоть до взаимодействия с отдельными частицами, в основном протонами, нагревая их. Это взаимодействие усиливается благодаря магнитным полям, присутствующим в короне, которые могут служить дополнительным источником энергии для нагрева плазмы.

Для детального изучения этого явления были задействованы космические аппараты Solar Orbiter и Parker Solar Probe. Первый из них, работая в тандеме с Parker Solar Probe, осуществлял как дистанционное зондирование, так и непосредственные измерения вблизи Солнца, позволяя учёным получить более полную картину происходящих процессов.

Ключевым моментом исследования стал манёвр Solar Orbiter, который включал в себя поворот на 45 градусов и отклонение от первоначального курса. Это позволило аппарату сфокусироваться на определённой области и синхронизировать работу с Parker Solar Probe для совместного сбора данных. Даниэле Теллони (Daniele Telloni) из Итальянского национального института астрофизики (INAF) отметил, что такой манёвр представлял некоторый риск, но благодаря ему учёные смогли получить уникальные данные.

Сравнив новые измерения с теоретическими предсказаниями, сделанными физиками, изучающими Солнце в течение многих лет, Теллони сообщил, что физики почти наверняка были правы в определении турбулентности как способа передачи энергии.

Результаты исследования позволили сделать значительный шаг вперёд в понимании процессов, происходящих в солнечной короне. «Эта работа открывает совершенно новое измерение в данном исследовании», — подчёркивает Гари Занк (Gary Zank) из Университета Алабамы в Хантсвилле, США.

Теперь учёные имеют возможность не только подтвердить давнюю теорию о роли турбулентности в нагреве короны, но и детально изучить механизмы этого процесса. Это открытие, безусловно, станет вехой в истории астрофизики, открывая новые горизонты для будущих исследований. «Данная работа представляет собой значительный шаг вперёд в решении проблемы нагрева короны», — отметил Даниэль Мюллер (Daniel Müller), учёный проекта.

Сверхмассивная чёрная дыра поглотила звезду втрое больше Солнца и выплюнула остатки

Группа американских учёных, возможно, нашла доказательства, что сверхмассивная чёрная дыра в другой галактике поглотила достаточно крупную звезду с массой в три солнечных и выбросила её остатки в окружающее пространство. По этим остаткам как раз и удалось определить массу погибшей звезды.

 Источник изображения: chandra.si.edu

Источник изображения: chandra.si.edu

Событие, получившее название ASASSN-14li, наблюдалось в 2014 году, а произошло оно в центре галактики PGC 043234, расположенной на расстоянии 290 млн световых лет от Земли. Для подробного наблюдения за событием использовались рентгеновские обсерватории «Чандра» (Chandra) и XMM-Newton, данные с которых помогли изучить его более подробно. Анализ произведённых после поглощения звезды выбросов позволил учёным утверждать, что она когда-то имела массу, в три раза превышающую массу Солнца.

Подобные инциденты называются событиями приливного разрушения. Когда подошедшая слишком близко звезда оказывается во власти гравитационного поля сверхмассивной чёрной дыры, её обломки нагреваются, и возникает вспышка, охватывающая оптический, ультрафиолетовый и рентгеновский диапазоны. Учёные измерили длины волн этого излучения и установили концентрации элементов в окружающем чёрную дыру аккреционном диске — по соотношению азота и углерода удалось оценить массу звезды.

Полученные результаты не согласуются с опубликованной в 2017 году работой, посвящённой исследованию события ASASSN-14li — тогда учёные сделали вывод, что масса этой звезды составляла всего 0,6 солнечной. Были и другие исследования, авторы которых даже предполагали, что окружающее сверхмассивную чёрную дыру вещество вообще не имело отношения к какой-либо звезде, а возникло в результате серии извержений, порождённых самой чёрной дырой.

window-new
Soft
Hard
Тренды 🔥
Microsoft тестирует на iOS и Windows 11 функцию Circle to Copilot — аналог Circle to Search от Google 28 мин.
«Будет нашей лучшей работой»: Larian раскрыла детали следующего крупного патча Baldur’s Gate 3 и заинтриговала тизером новой игры 29 мин.
Microsoft запретит настраивать Edge на неактивированных Windows 11 51 мин.
Еврокомиссия дала TikTok сутки на пояснение рисков нового приложения TikTok Lite 2 ч.
Всем пользователям Twitch вот-вот откроют ленты в стиле TikTok 2 ч.
Supergiant показала три часа геймплея тестовой версии Hades II 2 ч.
Состоялся релиз новой версии операционной системы Kaspersky Thin Client для тонких клиентов 5 ч.
Первый сторонний магазин iOS-приложений стал доступен в Евросоюзе 5 ч.
В России открыли Ассоциацию развития киберспортивной инфраструктуры — владельцы компьютерных клубов хотят добиться налоговых льгот 5 ч.
OpenAI GPT-4 достигла уровня врачей-офтальмологов в диагностике глазных заболеваний 6 ч.