Опрос
|
реклама
Быстрый переход
Intel нашла куда пристроить свои квантовые процессоры — они появятся в компьютерах «Made in Japan»
07.02.2025 [00:18],
Геннадий Детинич
Компания Intel подписала меморандум о взаимопонимании с Японским национальным институтом передовой промышленной науки и технологий (AIST) о совместной работе над квантовыми компьютерами следующего поколения. Для партнёров из Японии Intel будет поставлять свои новейшие квантовые процессоры, а исследователи из AIST создадут на их основе рабочие системы для совместного распространения среди научных учреждений всего мира. ![]() Источник изображения: Intel Компания Intel не была особенно активной в разработке квантовых систем, хотя работала в одном из самых перспективных направлений — сфере спиновых кубитов, которые также называют кремниевыми. Такие квантовые процессоры можно производить на стандартных полупроводниковых фабриках, что обеспечивает их массовость, а также обещает достаточно простое масштабирование систем. Свой первый квантовый процессор Tunnel Falls на 12 спиновых кубитах компания представила в июне 2023 года. В 2024 году ожидался выпуск процессора с увеличенным числом кубитов, но он так и не был представлен. Однако в мае 2024 года сотрудники Intel опубликовали в Nature развёрнутую статью, в которой объясняли превосходство квантовых процессоров компании над конкурентными разработками. В частности, Intel заявила об установлении отраслевого стандарта в области единообразия, точности и статистики измерений спиновых кубитов. Следует отметить, что сферу разработки и эксплуатации квантовых вычислителей в Японии около пяти лет развивает компания IBM. Свой третий квантовый компьютер Q System One компания передала Токийскому университету в обмен на обязательство разработки прикладных квантовых алгоритмов. Кроме того, IBM ещё раньше Intel подписала договор о сотрудничестве с AIST — это произошло в июне 2024 года. Тогда стало известно, что исследовательский институт заключил партнёрство с IBM по разработке квантового компьютера ёмкостью 10 000 кубит, запуск которого запланирован на 2029 год. Возвращаясь к совместной работе Intel и AIST, добавим, что компании также договорились совместно развивать полупроводниковые и сверхпроводниковые интегральные схемы, необходимые для создания квантовых компьютеров следующего поколения. Разрабатываемые партнёрами квантовые системы будут доступны университетам в США, Японии и других странах. Остальным организациям придётся доплатить за доступ к платформам. Кроме того, ирландское подразделение Intel по исследованиям и разработкам было названо одним из 36 партнёров, работающих над созданием европейской цепочки поставок криогенных квантовых технологий, включая криогенную фотонику, микроэлектронику и криомикросистемы. Проект, получивший название ARCTIC (Advanced Research on Cryogenic Technologies for Innovative Computing), стал первым результатом программы совместного объединения Европейского союза по производству чипов (CJU). Канадцы построили фотонный квантовый компьютер и пообещали быстро масштабировать его до миллиона кубитов
30.01.2025 [19:58],
Геннадий Детинич
Канадский стартап Xanadu, ранее отметившийся совместной работой с Nvidia над квантовыми симуляторами, сообщил о создании вычислительной квантовой системы на фотонах. Квантовое оборудование на фотонах можно использовать при комнатной температуре и размещать в обычных серверных стойках. Создав базовый набор стоек ничто не мешает произвести тысячи таких систем, что уже в ближайшей перспективе позволит изготовить квантовый вычислитель с миллионом кубитов. ![]() Источник изображения: Nature 2025 Сделанное компанией Xanadu Quantum Technologies заявление означает, что имеющий практическую ценность квантовый компьютер не за горами. Сама компания надеется представить квантовый вычислитель с миллионом кубитов уже к 2029 году. Ни одна серьёзная компания в сфере разработки квантовых компьютеров ещё не позволяла себе давать столь смелые обещания. Остаётся надеяться, что Xanadu хотя бы попытается его выполнить. В опубликованной на днях в журнале Nature работе специалисты Xanadu рассказали, на чём строится работа их системы и как она будет выглядеть. Комплект под названием Aurora представлен четырьмя стандартными серверными стойками, что, безусловно, намного удобнее и практичнее использования криогенных камер для сверхпроводящих кубитов. В одной стойке собраны лазерная система для формирования опорного и модулирующего лучей, а также оптическая система для их распределения и управления ими. Следует сказать, что квантовые «оптические чипы» Xanadu оперируют физическими состояниями лазерных лучей, учитывая их рекомбинацию и сложение. В конечном итоге результатом вычисления алгоритма будет количество фотонов в лазерном луче на выходе из системы. Однако здесь есть важный нюанс, который Xanadu не акцентирует: хотя сам вычислительный комплекс действительно работает при комнатной температуре, датчики, подсчитывающие фотоны в результирующем луче, охлаждаются до криогенных температур. Для этого в соседней со стойками комнате размещено специальное холодильное оборудование, без которого система функционировать не сможет. На данный момент в общей сложности в трёх вычислительных стойках задействовано 35 чипов, образующих массив из 12 кубитов для запуска алгоритма. В своей работе Xanadu не раскрывает механизмов коррекции ошибок — самого слабого места квантовых вычислений. Однако компания уверенно заявляет, что её платформа легко масштабируется до миллионов кубитов. В нижней части стоек расположены оптические цепи для связи между стойками, что позволяет соединять тысячи таких модулей. По сравнению с усилиями конкурирующих компаний этот процесс масштабирования выглядит значительно проще. В Xanadu признают, что предложенное ими решение далеко от совершенства. В частности, в процессе обработки теряется часть света (фотонов), что ведёт к увеличению частоты ошибок. Тем не менее компания обещает совершенствовать платформу и не теряет надежды создать имеющий практическую ценность квантовый компьютер к 2029 году. Учёные сделали квантовые вычисления точнее, внедрив два кода коррекции ошибок вместо одного
24.01.2025 [19:00],
Геннадий Детинич
Для квантовых вычислений классические методы коррекции ошибок не подходят. Причина кроется в квантовой механике, которая на базовом уровне не позволяет фиксировать промежуточные результаты для дальнейшего сравнения. Новые методы коррекции ошибок частично справляются с этой задачей, но имеют множество ограничений. Учёные из Австрии смогли реализовать механизм коррекции ошибок с подключением двух разных алгоритмов, чем повысили точность расчётов. ![]() Источник изображения: Helene Hainzer/University of Innsbruck Промежуточные квантовые состояния кубитов, задействованных в расчётах, нельзя, например, сохранить для проверки чётности. Поэтому из нескольких физических кубитов создают один логический кубит, при этом часть физических кубитов в составе логического кубита запутывают определённым образом. Это позволяет отслеживать ошибки без разрушения цепочки вычислений и корректировать их. Основная сложность заключается в том, что для разных групп логических элементов (гейтов) требуются различные коды коррекции. Учёные из Университета Инсбрука (University of Innsbruck) разработали методику, позволяющую переключать квантовый компьютер с одного оптимального кода на другой в процессе выполнения вычислений. Это значительно снизило частоту ошибок. Свою методику исследователи испытали на квантовом компьютере с ловушками ионов. Компьютер состоял из 16 кубитов, из которых были созданы две независимые логические цепи. Каждая цепь обрабатывалась оптимальным для неё кодом коррекции ошибок. Переключение между логическими цепями происходило без возникновения ошибок, что подтвердило возможность использования двух независимых кодов в рамках одного вычислительного цикла. В перспективе эта методика упростит исправление ошибок при масштабировании вычислений, экономно расходуя физические кубиты, которых никогда не будет много. «Квантовые жёсткие диски» стали ближе к реальности благодаря разработке австралийских учёных
21.11.2024 [14:34],
Геннадий Детинич
Учёные из Австралии сообщили о разработке «трёхмерных» топологических кодов коррекции ошибок квантовых вычислений. Предложенная ими схема использует для коррекции меньше физических кубитов в пересчёте на один логический кубит. Новшество обещает приблизить появление «квантовых жёстких дисков» — хранилищ квантовых состояний для вычислений с невообразимым уровнем производительности. ![]() Источник изображения: ИИ-генерация Кандинский 3.1/3DNews Как известно, время когерентности кубитов — время удержания запутанных квантовых состояний — очень маленькое по причине их высочайшей нестабильности. И если с физикой бороться предельно сложно, то операции коррекции ошибок могут помочь в проведении безошибочных вычислений. Классические компьютеры это показали с достаточной убедительностью. Но в случае операций с кубитами всё намного сложнее — для них нужны свои коды и механизмы коррекции. Традиционным методом исправления ошибок в квантовых вычислениях признан так называемый топологический код или поверхностный код, у которого также есть другие названия. Это своего рода таблица или матрица, которая требует физической или схемотехнической реализации логических кубитов из нескольких физических. В идеале для безошибочной работы каждого логического кубита необходимо 1000 физических кубитов, но на таком подходе масштабируемую вычислительную квантовую платформу построить нельзя. Учёные из Австралии поставили перед собой задачу уйти от традиционного поверхностного кода и создать его трёхмерный аналог, который помог бы облегчить создание квантового вычислителя или симулятора с более эффективной коррекцией ошибок и экономным расходованием физических кубитов. Как недавно они сообщили в журнале Nature Communications, им это удалось. «Предлагаемая нами квантовая архитектура потребует меньше кубитов для подавления большего количества ошибок, высвободив больше для полезной квантовой обработки», — говорится в заявлении ведущего автора работы Доминика Уильямсона (Dominic Williamson), исследователя из Нано-института и школы физики Университета Сиднея (University of Sydney Nano Institute and School of Physics). «Этот прогресс имеет решающее значение для разработки масштабируемых квантовых компьютеров, поскольку позволяет создавать более компактные системы квантовой памяти, — сказано в аннотации к работе. — За счёт сокращения физических затрат на кубиты полученные результаты прокладывают путь к созданию более компактного "квантового жёсткого диска" — эффективной системы квантовой памяти, способной надёжно хранить огромные объёмы квантовой информации». Google снова показала квантовое превосходство — квантовые компьютеры стали ближе к практическому применению
10.10.2024 [09:19],
Дмитрий Федоров
Группа учёных под руководством Google сообщила о прорыве в области квантовых вычислений. Они снова продемонстрировали квантовое превосходство — способность квантового компьютера выполнять вычисления, на которые не способен классический, — но на этот раз сосредоточились на точности вычислений. Также учёные показали, что существуют фазовые переходы в вычислительных процессах, что открывает путь к дальнейшему развитию квантовых технологий. ![]() Источник изображений: Google, Nature Ещё в 2019 году Google заявляла о достижении квантового превосходства, вызвав бурные споры в научном сообществе. Тогда IBM подвергла сомнению этот результат, утверждая, что классические алгоритмы могут быть оптимизированы для решения аналогичных задач. В новой работе, опубликованной в журнале Nature, учёные описали эксперимент с использованием метода случайной выборки цепей (Random Circuit Sampling, RCS), в ходе которого 67-кубитная система выполнила 32 цикла вычислений. Акцент сделан не на квантовом превосходстве, а на том, что даже при наличии шумов — основного ограничения для квантовых процессоров и главной причины ошибок вычислений — можно добиться вычислительных успехов, которые превосходят возможности классических систем. Это доказывает, что квантовые вычисления приближаются к фазе практического применения. Термин «квантовое превосходство» вызывает определённые споры в научном сообществе. Некоторые исследователи предпочитают использовать термины «квантовая полезность» (Quantum Utility) или «квантовое преимущество» (Quantum Advantage). Последний термин подразумевает не только теоретическое превосходство квантовых устройств, но и их практическую пользу. В отличие от квантового превосходства, которое не связано с реальной полезностью для задач, квантовое преимущество предполагает выполнение задач быстрее и эффективнее, чем на классических компьютерах. ![]() Квантовые процессоры, несмотря на их потенциал, остаются чрезвычайно чувствительными к внешним шумам, таким как температурные колебания, магнитные поля или даже космическая радиация. Эти помехи могут существенно снижать точность вычислений. В исследовании Google учёные изучили влияние шума на работу квантовых устройств и провели эксперимент, который позволил исследовать два ключевых фазовых перехода: динамический переход, зависящий от числа циклов, и квантовый фазовый переход, влияющий на уровень ошибок. Результаты показали, что даже в условиях шума квантовые системы эпохи NISQ могут достичь вычислительной сложности, недоступной для классических систем. ![]() Фазовые переходы в случайной выборке цепей (RCS). График иллюстрирует два фазовых перехода. Первый — от сосредоточенного распределения битовых строк на малом числе циклов к широкому или антиконцентрированному распределению. Второй — переход в условиях шума, при котором высокая ошибка на цикл приводит к переходу от системы с полной корреляцией к представлению в виде нескольких несвязанных подсистем Метод случайной выборки цепей (RCS), использованный в эксперименте, ранее подвергался критике за свою простоту и кажущуюся бесполезность. Однако Google подчёркивает, что RCS является ключевым методом для перехода к задачам, которые невозможно решить на классических компьютерах. Этот метод оптимизирует квантовые корреляции с использованием операций типа iSWAP, что предотвращает упрощение классических эмуляций. Благодаря этому подходу Google смогла чётко обозначить границы возможностей квантовых систем, стимулируя конкуренцию между квантовыми и классическими вычислительными платформами. ![]() В исследовании также рассматриваются перспективы практического использования квантовых процессоров. Одним из первых примеров может стать сертифицированное генерирование по-настоящему случайных чисел, требующее высокой вычислительной сложности и устойчивости к шумам. Серджио Бойксо (Sergio Boixo), руководитель квантовых исследований Google, в своём интервью для Nature отметил: «Если квантовые устройства не смогут продемонстрировать преимущество с помощью RCS, самого простого из примеров использования, то вряд ли они смогут это сделать в других задачах». ![]() Дорожная карта развития квантовых вычислений Google Работа Google представляет собой значительный вклад в развитие квантовых технологий. Хотя практическое применение квантовых устройств остаётся сложной задачей, такие направления, как сертифицированное генерирование случайных чисел, могут стать первым шагом к их коммерческому использованию. Несмотря на сложности, связанные с шумами, эксперименты Google показывают, что переход от теоретических исследований к практическому применению квантовых устройств становится всё более реальным. В России создан 50-кубитный ионный квантовый компьютер
07.10.2024 [17:58],
Сергей Сурабекянц
50-кубитный квантовый ионный компьютер разработан научной группой Российского квантового центра и Физического института имени Лебедева РАН (ФИАН). На данный момент он является самым мощным квантовым компьютером в России. Доступ к нему осуществляется через облачную платформу. Разработка велась в рамках реализации дорожной карты развития высокотехнологичной области «Квантовые вычисления», координатором которой является госкорпорация «Росатом». Представленный квантовый компьютер базируется на уникальной кудитной технологии, которую российские учёные стали использовать третьими в мире, после Австрии и США. Впервые российский 16-кубитный компьютер был представлен в июле 2023 года на первом Форуме будущих технологий (ФБТ). На втором ФБТ в феврале 2023 года была продемонстрирована 20-кубитная машина. Менее чем за год после этого удалось увеличить количество кубитов до 50. «За год мы полностью переделали ультрастабильный лазер и существенно модернизировали и систему адресации и считывания, поработали над стабильностью всех подсистем, автоматизировали многие калибровки. За счёт этого получилось в короткий срок поднять мощность нашего квантового компьютера и нарастить число кубит. Дальше мы планируем работать и над увеличением числа кубит, и над достоверностью двухкубитных операций. Всё это нужно для запуска более сложных квантовых алгоритмов. Потенциал для модернизации у нашей машины есть», — прокомментировал научный руководитель проекта Илья Семериков. Эксперты полагают, что квантовые вычисления в первую очередь будут востребованы в фармацевтике для моделирования сложных соединений при создании новых лекарств. Квантовые вычисления помогут при прогнозировании эпидемий. Врачи смогут в кратчайшие сроки разработать персональные рекомендации для лечения с учётом конкретных симптомов и особенностей организма. Квантовые вычисления обеспечат принципиально новые возможности при моделировании химических процессов, что безусловно будет востребовано в промышленном секторе. В логистических операциях использование квантовых компьютеров для составления оптимальных маршрутов и расписаний движения транспорта приведёт к сокращению задержек, удешевит и ускорит доставку грузов. Аналитики уверены, что квантовые технологии радикально повысят возможности ИИ в области машинного обучения, распознавания и анализа, обработки больших данных при меньших энергозатратах. Постквантовое шифрование должно обеспечить необходимый уровень защиты персональных и конфиденциальных данных. В финансовом секторе квантовые вычисления помогут минимизировать риски и точнее оценить кредитоспособность клиента. «Ионная платформа является в мире одной из главных по значимости в квантовых вычислениях. В ФИАНе полностью освоена технология создания квантового компьютера на ионах. Наша исследовательская группа смогла обеспечить высокие темпы развития квантового вычислителя до уровня в 50 кубитов, который позволяет проектировать его будущее применение в прикладных задачах экономики и сферы безопасности. Ожидается, что к 2030 году квантовые вычисления дополнят классические вычисления в решении большого ряда специфических задач, в том числе, позволят развивать квантовую химию и обеспечивать квантовое шифрование» — заявил Директор ФИАН Николай Колачевский. «50 кубитов - это колоссальное достижение, особенно, учитывая, что 4 года назад лучшим результатом в России было 2 кубита, а ионное направление построено с нуля. Однако для нас это лишь первый шаг на пути к промышленному использованию квантовых вычислений. […] Мы верим, что уже через несколько лет отдельные отрасли смогут извлечь пользу от использования того самого квантового превосходства, и сделаем все, чтобы максимально упростить эту задачу», — считает сооснователь Российского квантового центра Руслан Юнусов. Ранее он озвучивал планы создания 100-кубитного квантового компьютера к 2030 году. Россия наряду с США и Китаем сегодня входит в число стран, создавших квантовые компьютеры на всех четырёх приоритетных для квантовых вычислителей платформах: сверхпроводниках, ионах, нейтральных атомах и фотонах. И только шесть стран построили квантовые компьютеры с 50 кубитами и более: Китай, США, Канада, Россия, Япония и Франция. США стандартизировали первые криптографические алгоритмы, стойкие к взлому на квантовых компьютерах
13.08.2024 [21:20],
Сергей Сурабекянц
На сегодняшний день практически все чувствительные данные в мире защищены схемой ассиметричного шифрования RSA (Rivest-Shamir-Adleman), которую практически невозможно взломать с помощью современных компьютеров. Но появление квантовых компьютеров может кардинально изменить ситуацию. Поэтому Национальный институт стандартов и технологий США (National Institute of Standards and Technology, NIST) представил три схемы шифрования постквантовой криптографии. ![]() Источник изображений: unsplash.com Новые стандарты должны стать важным элементом криптографической защиты данных. Предыдущие стандарты криптографии NIST, разработанные в 1970-х годах, используются практически во всех устройствах, включая интернет-маршрутизаторы, телефоны и ноутбуки. Руководитель группы криптографии NIST Лили Чен (Lily Chen) уверена в необходимости массовой миграции с RSA на новые методы шифрования: «Сегодня криптография с открытым ключом используется везде и во всех устройствах, наша задача — заменить протокол в каждом устройстве, что нелегко». Хотя большинство экспертов считают, что крупномасштабные квантовые компьютеры не будут построены как минимум ещё десять лет, существуют две веские причины для беспокойства уже сегодня:
Поэтому эксперты по безопасности в различных отраслях призывают серьёзно относиться к угрозе, исходящей от квантовых компьютеров. Новые схемы шифрования основаны на понимании сильных и слабых сторон квантовых вычислений, так как квантовые компьютеры превосходят классические лишь в достаточно узком спектре задач. К квантово-устойчивым криптографическим методам относятся:
На сегодняшний день наиболее перспективным методом NIST считает решётчатую криптографию. Институт ещё в 2016 году объявил публичный конкурс на лучший алгоритм постквантового шифрования. Было получено 82 заявки от команд разработчиков из 25 стран. С тех пор конкурс прошёл через четыре отборочных тура и в 2022 году завершился, назвав четыре победивших алгоритма. Были учтены мнения криптографического сообщества, промышленных и учёных кругов, а также заинтересованных государственных служб. ![]() Четыре победивших алгоритма имели звучные названия: CRYSTALS-Kyber, CRYSTALS-Dilithium, Sphincs+ и FALCON, но после стандартизации получили типовое обозначение «Федеральный стандарт обработки информации» (Federal Information Processing Standard, FIPS) с номерами 203–206. Сегодня NIST объявил о стандартизации FIPS 203, 204 и 205. Ожидается, что FIPS 206 будет стандартизирован ближе к концу года. FIPS 203, 204 и 206 основаны на решётчатой криптографии, в то время как FIPS 205 — на хеш-функциях. Стандарты включают компьютерный код алгоритмов шифрования, инструкции по его реализации и сценарии предполагаемого использования. Для каждого протокола существует три уровня безопасности, разработанные для обеспечения будущих стандартов в случае обнаружения в алгоритмах слабых мест или уязвимостей. Ранее в этом году внимание криптографического сообщества привлекла публикация Или Чена (Yilei Chen) из Университета Цинхуа, которая утверждала, что решётчатая криптография на самом деле плохо защищена от квантовых атак. Но при дальнейшем рассмотрении силами сообщества в аргументации Чена были найдены ошибки, и авторитет решётчатой криптографии был восстановлен. Этот инцидент подчеркнул базовую проблему, лежащую в основе всех криптографических схем: нет никаких доказательств того, что какие-либо из математических задач, на которых основаны схемы, на самом деле «сложные». Единственным реальным доказательством стойкости шифрования, даже для стандартных алгоритмов RSA, являются многочисленные неудачные попытки взлома в течение длительного времени. Поскольку постквантовые стандарты криптографии пока очень «молоды», их стойкость постоянно подвергается сомнениям и попыткам взлома, причём каждая неудачная попытка только повышают доверие к ним. «Люди изо всех сил пытались взломать этот алгоритм. Многие люди пытаются, они очень стараются, и это на самом деле придаёт нам уверенности», — заявила по этому поводу Лили Чен. Безусловно, представленные NIST новые стандарты постквантового шифрования актуальны, но работа по переводу на них всех устройств только началась. Потребуется длительное время и значительные средства, чтобы полностью защитить данные от дешифровки при помощи будущих квантовых компьютеров. Для примера, компания LGT Financial Services потратила 18 месяцев и около полумиллиона долларов лишь на частичное внедрение новых алгоритмов, а затраты на полный переход оценить затруднилась. В США предложили создать квантовый интернет в трубах с вакуумом и с фокусирующими линзами
10.07.2024 [10:33],
Геннадий Детинич
Учёные из Школы молекулярной инженерии им. Прицкера Чикагского университета (PME) предложили опутать США сетью особых каналов связи, ориентированных на передачу квантовых состояний кубитов. Это позволит создать квантовый интернет и реализовать распределённые квантовые вычисления, что умножит мощь и без того перспективных квантовых вычислителей. В этом поможет опыт гравитационно-волновых обсерваторий, ведь кубиты придётся передавать в вакууме. ![]() Источник изображения: University of Chicago Исследование финансируется военными и властями США. Квантовый интернет — это не только абсолютно безопасная связь, которая не поддаётся незаметному взлому, но также экспоненциальный рост вычислений. Распределённые квантовые вычисления могут на какое-то время решить проблему с масштабированием квантовых платформ. Пока в составе каждого вычислителя физически большие кубиты и их мало, перераспределение вычислительной нагрузки поможет наращивать производительность относительно простым способом. Учёные уже умеют и даже внедряют в практику обмен квантовыми состояниями на больших расстояниях с помощью кодирования фотонов. Благодаря этому квантовые состояния можно передавать по обычному оптоволокну и с помощью лазера по воздуху и в вакууме, например, через спутники. Однако скорость передачи при этом очень маленькая, как и велики затухания в оптоволокне. Учёные из Чикагского университета опирались на опыт многолетней работы гравитационно-волновых обсерваторий, датчики которых — это трёхкилометровые тоннели с высоким вакуумом (10-11 атмосфер). Благодаря зеркалам фотоны в тоннелях пролетают колоссальные расстояния, отзываясь на гравитационные волны. Таким же образом можно передавать на сотни и тысячи километров квантовую информацию, закодированную в состояниях фотонов. А чтобы снизить вероятность их рассеивания, необходимо предусмотреть систему фокусирования на всём протяжении маршрута. В результате работы исследователи теоретически обосновали возможность охватить США сетью квантового интернета из вакуумных труб диаметром 20 см с фокусирующими линзами через каждые несколько километров. Расчёты показывают, что всё будет работать при среднем уровне вакуума (10-4 атмосфер). На следующем этапе учёные проведут экономическое обоснование проекта. Но даже сейчас они подчёркивают, что ради скоростной квантовой сети не жалко будет никаких денег. Учёные создали 2D-кулер для квантовых компьютеров — он обеспечит температуру ниже, чем в открытом космосе
08.07.2024 [16:18],
Анжелла Марина
Швейцарские учёные разработали инновационную двумерную систему охлаждения для квантовых компьютеров, способную достигать температур до 100 милликельвинов, преобразуя тепло в электрическое напряжение. Разработка может стать прорывом в области квантовых вычислений. ![]() Источник изображения: LANES EPFL Исследовательская группа LANES из Швейцарской федеральной политехнической школы Лозанны (EFPL), возглавляемая Андрашем Кишем (Andras Kis), создала устройство, которое по эффективности соответствует современным технологиям охлаждения, но работает при слабых магнитных полях и сверхнизких температурах, необходимых для квантовых систем. Новая технология позволяет достигать сверхнизких температур путём преобразования тепла в электрическое напряжение, что особенно важно для вычислений, так как квантовые биты (кубиты) чрезвычайно чувствительны к теплу и требуют охлаждения до температур ниже 1 кельвина, пишет ресурс Tom's Hardware. ![]() Источник изображения: LANES EPFL «В настоящее время в квантовых вычислительных системах нет механизма, предотвращающего нагрев кубитов от работающей электроники», — пояснил аспирант Габриэле Паскуале (Gabriele Pasquale). Однако эта технология построена на основе двумерного материала толщиной всего в несколько атомов, и в сочетании с графеном позволяет достичь высокой производительности. Устройство работает на основе эффекта Нернста — термомагнитного явления, при котором в проводнике генерируется электрическое поле под воздействием магнитного поля и разницы температур. Важно отметить, что новая система охлаждения может быть легко интегрирована в существующие квантовые компьютеры, так как изготовлена из доступных электронных компонентов. «Данные результаты представляют собой значительный прогресс в нанотехнологиях и открывают перспективы для разработки передовых систем охлаждения, необходимых для квантовых вычислений», — подчеркнул Паскуале. Несмотря на достижение, исследователи отмечают, что данная технология предназначена исключительно для квантовых вычислений и не может быть использована для охлаждения обычных компьютеров. Квантовые вычисления для всех: представлен карманный эмулятор 30-кубитовой квантовой системы Quokka
26.06.2024 [18:15],
Геннадий Детинич
Учёные из Технологического университета Сиднея разработали и готовы продавать через компанию Eigensystems крошечные персональные эмуляторы отказоустойчивых 30-кубитовых квантовых компьютеров Quokka («Квокка»). Новинка «демократизирует» квантовые вычисления, создавая основу для появления широкого круга специалистов среди нового поколения учёных, инженеров, программистов, преподавателей и любителей. ![]() Источник изображений: Andy Roberts Квокка — одно из самых симпатичных сумчатых Австралии — изображён на верхней крышке корпуса эмулятора квантового компьютера, а первые две буквы названия этих животных намекают на кубиты. Платформу разработали два специалиста Центра квантового программного обеспечения и информации (QSI) Технологического университета Сиднея — Саймон Девитт (Simon Devitt) и Крис Ферри (Chris Ferrie). Решение задумано как обширная образовательная экосфера с уроками, проектами и сообществом. «Традиционное STEM-образование основано на педагогике 100-летней давности в мире, управляемом обработкой информации. Слово "квант" не фигурирует ни в национальной, ни в какой-либо другой государственной учебной программе, — поясняют цель своей разработки учёные. — Квантовая грамотность определит передний край инноваций XXI века, но до сих пор не было ясного пути в сферу квантовых вычислений для студентов, преподавателей и любителей, чтобы исследовать эту область и открывать возможности». Устройство Quokka представляет собой доступный по цене удобный эмулятор персонального квантового компьютера, который может запускать языки программирования, написанные для квантовых вычислений, и возвращать результаты. Компания Eigensystems начала принимать заявки на устройство, поставки которого стартуют в июле. Quokka эмулирует то, чего пока не существует — отказоустойчивый квантовый компьютер ёмкостью 30 кубит. Но он позволит уже сейчас изучать приложения квантовых вычислений, обеспечивая практику и опыт, используя самые передовые технологии. ![]() «Это позволяет вам экспериментировать и узнавать о квантовых алгоритмах и программах, взаимодействуя с ним точно так же, как вам пришлось бы взаимодействовать с будущим отказоустойчивым квантовым компьютером», — говорят разработчики. Базовый уровень платформы включает в себя три программных интерфейса. На продвинутом уровне представлена обширная библиотека материалов с доступом к урокам, руководствам, кураторским проектам сообщества и возможностью делиться проектами и совместно их создавать. На уровне Quokka Stories — сборнике уроков, основанных на повествовании — происходит ориентация на образовательную программу, переосмысливающую науку, технологию, инженерное дело и математику через призму обработки информации. Поскольку люди пока плохо представляют, как и зачем использовать квантовые платформы, возможность ознакомиться с ними хотя бы на уровне простейших эмуляторов — это правильное решение, на которое стоило бы обратить внимание образовательным учреждениям. Найден простой способ получения сверхчистого кремния — это путь к квантовым компьютерам нового поколения
13.05.2024 [12:48],
Анжелла Марина
Ученые разработали метод получения сверхчистого кремния, который применяется для производства чипов. Используя стандартное оборудование, они добились снижения доли примесей кремния-29 в чипах до 0,0002 %. Данный способ позволит создавать более мощные квантовые компьютеры с большим количеством кубитов, сообщает New Atlas. ![]() Источник изображения: Kandinskiy Кремний заслуженно считается одним из ключевых материалов, лежащих в основе современных электронных устройств и компьютерных технологий. Его значение настолько велико, что в его честь даже названа знаменитая Кремниевая долина в Калифорнии — место, где зародились многие IT-гиганты. Однако у кремния есть и определенные недостатки, ограничивающие его применение в перспективных областях, таких как квантовые вычисления. Исследователи из Мельбурнского и Манчестерского университетов разработали метод получения сверхчистого кремния с помощью стандартного оборудования — ионного имплантатора. С помощью этой установки, которая широко применяется в полупроводниковой промышленности, компьютерный чип был «обстрелян лучом» кремния-28, в процессе чего примеси кремния-29 были заменены на более желательный кремний-28, и в результате, концентрация кремния-29 в чипе снизилась с 4,5 % до 0,0002 %. Почему чистота кремния важна для квантовых компьютеров? Дело в том, что в основе работы квантовых компьютеров лежат кубиты — квантовые биты, использующие принципы квантовой механики. Они крайне чувствительны к любым внешним воздействиям и должны находиться в состоянии квантовой когерентности. Однако натуральный кремний содержит примерно 4,5 % изотопа кремний-29, имеющего дополнительный нейтрон. Эти нейтроны ведут себя как микроскопические магниты, нарушая когерентность кубитов и вызывая ошибки в квантовых вычислениях. Таким образом, использование натурального кремния существенно ограничивает возможности квантовых компьютеров, и для их полноценной работы требуется гораздо более чистый кремний с минимальным содержанием изотопа кремний-29. Кремний с высокой чистотой может позволить значительно расширить возможности квантовых компьютеров, так как чем больше кубитов содержит квантовый чип, тем он мощнее. Сверхчистый кремний, который получили ученые, в данном случае поможет стабилизировать работу таких многокубитных систем. В дальнейшем планируется протестировать разработанные сверхчистые кремниевые структуры на реальных квантовых устройствах. А успешные результаты могут привести к появлению квантовых компьютеров нового поколения. Япония ужесточит контроль экспорта полупроводников и квантовых технологий куда бы то ни было
26.04.2024 [20:21],
Сергей Сурабекянц
Японское правительство планирует расширить ограничения на экспорт ещё четырёх технологий, связанных с полупроводниками и квантовыми вычислениями. Новые меры коснутся сканирующих электронных микроскопов, используемых для анализа изображений наночастиц и транзисторов Gate all around. Потребуются лицензии на поставки криогенных КМОП-схем, используемых в квантовых компьютерах, а также на сами квантовые компьютеры. ![]() Источник изображения: unsplash.com Поставки этих технологий во все страны, включая таких давних стратегических партнёров, как Южная Корея, Сингапур и Тайвань, потребуют одобрения чиновников экспортного контроля. Ужесточение экспортного контроля — очередной шаг Японии в глобальном стремлении контролировать поток стратегических технологий. Этот шаг призван улучшить контроль за экспортом компонентов военного назначения и согласуется с аналогичными тенденциями по всему миру, заявило в пятницу Министерство экономики, торговли и промышленности. Изменения вступят в силу в июле 2024 года, после периода общественного обсуждения до 25 мая. В прошлом году Япония расширила ограничения на экспорт 23 видов передовых технологий производства микросхем. Эта мера последовала за попытками США ограничить доступ Китая к ключевым полупроводниковым процессам. Официальные лица Вашингтона оказывают давление на своих международных партнёров, таких как Япония и Нидерланды, требуя присоединиться к торговым санкциям в отношении Китая, который США рассматривают как геополитического и потенциально военного соперника. Китайские учёные создали недорогой источник запутанных фотонов — это путь к массовому производству квантовых платформ
20.04.2024 [20:19],
Геннадий Детинич
Группа китайских учёных из Университета электронных наук и технологий Китая (UESTC), Университета Цинхуа и Шанхайского института микросистем и информационных технологий создала полупроводниковый источник запутанных фотонов, что может стать «замечательным потенциалом» для создания небольших и надежных квантовых чипов. В основе разработки лежит нитрид галлия (GaN), десятилетиями использующийся для выпуска синих светодиодов. ![]() Источник изображения: ИИ-генерация Кандинский 3.0/3DNews Запутывание фотонов позволяет защищать передаваемую информацию (квантовое распределение ключей) и выполнять квантовые вычисления или симуляции. И первые, и вторые операции можно выполнять с помощью пар запутанных фотонов. Другое дело, что их запутывание остаётся относительно сложным процессом, требующим особенных источников света, к примеру, на основе нитрида кремния или фосфида индия. Переход на нитрид галлия, хорошо знакомый производителям светодиодов и чипов, позволит шире и мощнее использовать квантовые каналы связи, а также подумать о создании квантовых систем на чипе. Разработанный китайскими учёными источник запутанных фотонов представляет собой вытравленное на плёнке нитрида галлия кольцо диаметром 120 мкм (сама плёнка выращена на сапфировой подложке традиционным способом). При освещении кольца лучом лазера в инфракрасном диапазоне часть фотонов оказываются в своеобразной ловушке и начинают перемещаться по кольцу. Некоторые из таких частиц становятся резонансными парами. Резонансные пары, в свою очередь в процессе так называемого четвертьволнового смешения — известного явления в нелинейной оптике (кольцо из нитрида галлия — это и есть нелинейный оптический канал), порождают новую пару уже запутанных друг с другом частиц. Измерения показали, что возникающая в кольце нитрида галлия запутанность такого же качества, как и в случае с другими квантовыми источниками света. Иными словами, предложенное решение можно брать на вооружение при проектировании оборудования для квантовых каналов связи и для квантовых процессоров. Более того, диапазон длин волн у GaN-источника света простирается до 100 нм против 25,6 нм у «традиционных» источников света. А это, в свою очередь, позволит расширить и уплотнить каналы передачи квантовой информации. По словам разработчиков, помимо квантового источника света, GaN также является многообещающим материалом для изготовления других компонентов квантовых схем, включая лазер с накачкой и детекторы лёгких частиц. «Платформа GaN имеет значительные перспективы для создания квантовых фотонных интегральных схем “всё на кристалле” по сравнению с существующими платформами», — резюмируют учёные. На пути к квантовому интернету учёные впервые смогли записать и считать квантовую информацию в состояниях фотонов
19.04.2024 [14:56],
Геннадий Детинич
Чувствительность квантовых состояний к слабейшим внешним помехам продолжает оставаться камнем преткновения на пути к квантовому интернету и распределённым квантовым вычислениям. Решением проблемы станет открытие квантовой памяти, которая позволит сохранять и считывать квантовые состояния без разрушения. Это сняло бы проблему квантовых повторителей и развёртывания глобальных сетей квантового интернета. ![]() Источник изображений: Imperial College London Группа учёных из Имперского колледжа Лондона предложила свой способ решения этих проблем. Они создали и испытали платформу по записи квантовых состояний фотонов в облаке атомов рубидия. Нейтральные холодные атомы, как хорошо известно, часто выступают в роли платформ с ярко выраженными квантовыми свойствами. Исследователи создали целую систему для генерации фотонов, преобразования их длин волн в необходимую для передачи по волоконно-оптической сети и записи в облако атомов рубидия. Своеобразным активатором «памяти» стал лазер, импульс которого включал её и отключал. Фотоны генерировались квантовыми точками, а затем с помощью фильтров и модуляторов им придавалась другая частота, соответствующая длине волны 1529,3 нм для передачи по оптике. До попадания в облако атомов рубидия частота фотонов подвергалась ещё одной корректировке, но уже с прицелом на то, чтобы атомы рубидия могли их поглощать. Такую память назвали ORCA (нерезонансное каскадное поглощение). Лазерный импульс, о котором упоминали выше, своим воздействием менял свойства атомов рубидия по поглощению фотонов. ![]() Эксперименты показали, что система может работать на стандартном оптоволоконном оборудовании. Эффективность сохранения квантовых состояний фотонов с последующим их извлечением без разрушения составила 12,9 %. Очевидно, что для внедрения этой разработки в практику пройдут годы, если не десятилетия, но это уже тот результат, который можно развивать. К счастью, он такой не один и что-то может стать реальностью намного раньше. Например, предложенная датчанами оптико-механическая квантовая память на запоминании квантовых состояний фотонов в фононах. Но это уже другая история. Новая эра в квантовых вычислениях: Microsoft научилась эффективно исправлять ошибки логических кубитов
03.04.2024 [20:22],
Геннадий Детинич
Компания Microsoft совместно с разработчиком квантовых компьютеров Quantinuum сообщила о разработке методологии, которая позволяет значительно снизить частоту появления ошибок при исполнении квантовых алгоритмов. Решение Microsoft не только снижает частоту появления ошибок, но также позволяет исправлять ошибки, что открывает путь к коммерческим квантовым системам и новой эре в вычислениях. ![]() Источник изображения: Microsoft Современные квантовые платформы подвержены шуму и поэтому ошибки вычислений на них неизбежны и многочисленны. Например, согласно анализу специалистов Google, для достижения полной безошибочности вычислений каждый логический кубит должен состоять из 1000 физических кубитов. Тем самым коммерчески значимый квантовый компьютер из 1000 логических кубитов, на которых будут исполняться алгоритмы, должен состоять из 1 млн физических кубитов. Это будет безумно дорого, но также неэффективно уверяют в Microsoft. «Простое увеличение числа физических кубитов с высокой частотой ошибок — без улучшения этого показателя — бесполезно, поскольку в результате большой квантовый компьютер станет не более производительным, чем раньше, — утверждают Деннис Том (Dennis Tom), генеральный менеджер Azure Quantum, и Криста Своре (Krysta Svore), вице-президент подразделения Advanced Quantum Development Microsoft. — Напротив, когда физические кубиты с достаточным качеством работы используются со специализированной системой управления и диагностики для обеспечения работы виртуальных кубитов, только тогда увеличение числа физических кубитов приводит к созданию мощных, отказоустойчивых квантовых компьютеров, способных выполнять более длительные и сложные вычисления». Иначе говоря, необходимы такие решения, которые помогут снизить как частоту появления ошибок физических кубитов, так и логических. Это позволит создавать логические кубиты из меньшего числа физических кубитов и быстрее приведёт к появлению коммерчески значимых квантовых систем, ведь, худо-бедно, а собрать сегодня платформу из 1000 физических кубитов — это реально. Используя квантовую платформу компании Quantinuum на ловушках ионов и фирменный процессор Quantinuum H2, команда исследователей смогла объединить 30 физических кубитов в четыре высоконадёжных логических кубита. На этих четырёх кубитах было запущено свыше 14 тыс. алгоритмов, в процессе обработки которых не возникло ни единой ошибки. Отдельные эксперименты были посвящены исправлению ошибок логических кубитов без разрушения их состояния. По мнению постановщиков экспериментов — это прорыв и начало новой эры квантовых вычислений. Это шаг в правильном направлении для квантовых вычислений. Остается ещё много проблем, которые предстоит решить, а затем повсеместно внедрить, но теоретически компьютер со 100 такими логическими кубитами уже может быть полезен для решения некоторых задач, тогда как система с 1000 кубитами, по словам Microsoft, «может обеспечить коммерческое преимущество». Работа специалистов Microsoft, посвящённая этому исследованию, свободно доступна по ссылке. |