реклама
Теги → космический зонд

Зонд NASA «Юнона» показал ледяную поверхность юпитерианской луны Европы в невероятных подробностях

Учёные опубликовали новые снимки ледяной луны Юпитера — Европы, поверхность которой зонд NASA «Юнона» снял по время близкого пролёта в сентябре 2022 года. Изображения стали редкой возможностью лучше изучить особенности рельефа и геологии спутника, на котором может существовать глобальный подлёдный океан с жидкой водой, теоретически пригодной к зарождению биологической жизни.

 Источник изображений: NASA/JPL-Caltech

Источник изображений: NASA/JPL-Caltech

Новые данные дадут ориентиры будущим миссиям по изучению особенностей Европы и поиску признаков жизни на ней. Позже в этом году в систему Юпитера стартует миссия Europa Clipper (с указаниями инопланетянам по поиску жизни на Земле). Также в систему Юпитера летит запущенный год назад европейский зонд JUICE, которому тоже помогут новые снимки «Юноны». Интересно, что сделаны они фактически вспомогательным оборудованием зонда, а не основными приборами.

Более того, учёные смогли настроить камеру ориентации зонда по звёздам (SRU) для получения снимков поверхности Европы в условиях слабого освещения. Благодаря этому удалось получить первые снимки ночной стороны Европы, освещённой лишь отражённым от облаков Юпитера светом Солнца. И это тоже были снимки, изобилующие множеством интересных деталей.

 Зона «Утконоса» на ночной стороне Европы (снимок сделан камерой SUN)

Зона «Утконоса» на ночной стороне Европы (снимок сделан камерой SRU)

Самым примечательным и перспективным объектом для изучения на поверхности Европы считается зона «Утконоса» — область со сторонами 37 × 67 км. Судя по вздыбленным краям этой области — это сравнительно молодое геологическое образование на поверхности. Рельеф Европы в целом невыразительный, а его складки быстро исчезают. Появляются же они, как считается, в процессе дрейфа ледяного щита по глобальному океану. Во льдах возникают трещины, через которые в космос на высоту до 200 км поднимаются брызги подлёдного океана. Выбросы воды формируют стенки кратеров и другие неровности, но также они сравнительно быстро сглаживаются. Детальные фотографии поверхности подскажут, где лучше искать признаки выбросов и проводить химический анализ подлёдной воды.

Впрочем, пока данные о наличии водяных гейзеров на Европе неубедительные. Там не было замечено таких ярких выбросов, как, например, на спутнике Сатурна Энцеладе. В то же время на Энцеладе и Европе присутствуют похожие по структуре и рисунку складки рельефа, а это подсказка, где искать самое интересное.

Зонд «Чанъэ-6» для первого в истории забора грунта с обратной стороны Луны вышел на орбиту спутника

Вчера запущенный 3 мая китайский зонд «Чанъэ-6» затормозил у Луны и вышел на её орбиту. Этот манёвр стал решающим для миссии, хотя зонд ещё несколько раз будет корректировать орбиту для выхода на точку спуска на поверхность спутника. Миссия «Чанъэ-6» станет первой в истории земной космонавтики, когда пробы грунта будут возвращены на Землю с обратной стороны Луны, куда и спуститься не просто, не говоря о целом комплексе манёвров.

 Источник изображения: CCTV

Источник изображения: CCTV

В состав зонда «Чанъэ-6» входит орбитальный, посадочный и возвращаемый модули. Посадочный и возвращаемый модули спустятся в районе Бассейна Южный полюс — Эйткен. Это крупнейший и древнейший в Солнечной системе ударный кратер, грунт из которого расскажет много интересного о строении Луны и истории нашей звёздной системы. Посадочный модуль будет брать пробы роботизированным ковшом и с помощью бура. Следить за работами на закрытой для связи с Землёй стороне Луны поможет выведенный ранее на её орбиту ретранслятор «Цюэцяо-2».

В качестве вторичной научной нагрузки китайский посадочный модуль несёт четыре полезных нагрузки иностранного производства, установленных в рамках международного партнёрства — это французский детектор DORN для измерения концентрации газа радона и продуктов его распада на поверхности Луны, итальянский лазерный уголковый отражатель, анализатор отрицательных ионов NILS Европейского космического агентства и пакистанский спутник ICUBE-Q. Также на модуле размещены посадочная и панорамная камеры, прибор для спектрального анализа минералов и прибор для анализа структуры лунного грунта.

Всего на проведение миссии «Чанъэ-6» отведено 53 дня. За это время будет совершено 11 манёвров, включая взлёт модуля с образцами грунта на орбиту Луны, стыковку с орбитальным модулем и возврат на Землю, где герметичная капсула с историческими образцами приземлится на севере Китая.

Космический зонд «Вояджер-1» впервые за пять месяцев отправил на Землю читаемые данные

Космический зонд «Вояджер-1» аэрокосмического агентства NASA впервые за пять последних месяцев прислал на Землю полностью читаемый отчёт. Команда миссии 20 апреля получила от аппарата сообщение с данными о состоянии его систем. Хотя зонд по-прежнему не может отправлять читаемые научные данные, команда миссии хотя бы понимает, что именно произошло с «Вояджером-1» и теперь имеется возможность его починить.

 Источник изображения: NASA

Источник изображения: NASA

Спустя тридцать пять лет с момента своего запуска в 1977 году «Вояджер-1» стал первым рукотворным объектом, покинувшим Солнечную систему и вошедшим в межзвёздное пространство. Через шесть лет после этого события, в 2018 году его брат-близнец «Вояджер-2» повторил этот успех. К счастью, «Вояджер-2» по-прежнему работает и отправляет данные на Землю.

Оба аппарата являются единственными рукотворными объектами, исследующими космическое пространство за пределами воздействия Солнца. Однако 14 ноября 2023 года, спустя 11 лет исследований межзвёздного пространства и находясь в 24 млрд км от Земли, «Вояджер-1» начал передавать домой непонятный бинарный код. С Землёй аппараты общаются именно бинарным кодом, и «Вояджер-1» посылал совершенно нечитаемые данные.

В марте инженеры NASA смогли отправить на «Вояджер-1» специальную команду, которая заставила зонд вернуть на Землю полный дамп своей бортовой памяти (FDS). Эти данные показали, что ошибка в передаче читаемой информации аппаратом возникла в результате деградации одной из его микросхем памяти, представляющей собой 3 % от общего объёма памяти FDS. К сожалению, микросхема содержала программный код, потеря которого сделала непригодными для использования научные и телеметрические данные «Вояджера-1».

 Команда миссии «Вояджер-1» после получения от зонда первой за пять месяцев читаемой информации. Источник изображения: NASA/JPL-Caltech

Команда миссии «Вояджер-1» после получения от зонда первой за пять месяцев читаемой информации. Источник изображения: NASA/JPL-Caltech

Очевидно, что заменить повреждённый чип памяти «Вояджер-1» инженеры NASA не могут. Однако они могут удалённо перенести повреждённый код в какую-то другую часть памяти FSD. Поскольку ни одна из секций памяти зонда не имеет достаточного объёма для хранения всего кода целиком, инженеры миссии должны разделить код на части и хранить их отдельно друг от друга. Необходимо также настроить соответствующие разделы хранилища таким образом, чтобы добавление повреждённого кода не привело к прекращению работы этих областей памяти по отдельности и не запускало код как единое целое. В дополнение к этому специалисты NASA должны будут обновить любые ссылки на новое местоположение повреждённого кода.

18 апреля команда NASA начала перенос повреждённого кода в другое место в составе памяти FDS. Процесс оказался весьма небыстрым, поскольку доставка радиосигнала к зонду занимает 22,5 часа, а ещё 22,5 часа требуется для того, чтобы получить обратный сигнал от аппарата.

Однако 20 апреля специалисты миссии подтвердили, что модификация памяти «Вояджер-1» оказалась успешной. Впервые за пять месяцев учёные смогли наладить канал связи с зондом и получить от него последние данные о его состоянии. В течение следующих недель инженеры будут работать с настройкой остальной части программного обеспечения памяти FDS и надеются восстановить те регионы системы, которые отвечают за компиляцию и отправку бесценных научных данных, собранных за пределами Солнечной системы.

NASA получило полный дамп памяти сбоящего «Вояджера-1» — это должно помочь вернуть зонд в нормальное состояние

С ноября 2023 года космический зонд «Вояджер-1» передаёт на Землю бессмысленный набор нулей и единиц вместо бортовой телеметрии и научных данных. Сегодня агентство NASA сообщило, что определило возможный источник этой проблемы. Он связан с одним из трёх бортовых компьютеров аппарата, а точнее с его FSD-памятью, отвечающей за пакетирование научных данных и телеметрии для последующей отправки на Землю.

 Источник изображения: Caltech/NASA-JPL

Источник изображения: Caltech/NASA-JPL

NASA не теряло связи с «Вояджером-1», однако в течение нескольких месяцев его системы, отвечающие за передачу информации на Землю, фактически не работают. Отправлять на зонд команды тоже рискованно, поскольку неизвестно, как его бортовые системы на это отреагируют. Усложняется всё тем, что даже на отправку команды и получение ответа от аппарата уходит почти двое суток — зонд очень далёк от Земли. Исходя из этого, если проблему в системе коммуникации «Воядержера-1» не удастся решить, то запущенный почти 47 лет назад аппарат для исследования дальнего космоса будет, вероятнее всего, безвозвратно потерян.

В NASA считают, что причиной проблемы в работе «Вояджера-1» стал примитивный эквивалент оперативной памяти внутри бортовой системы полетных данных (FDS), который за все эти годы эксплуатации успел, что неудивительно, значительно поизноситься или даже повредиться.

Американское аэрокосмическое агентство 1 марта отправило на «Вояджер-1» специальную команду, которая должна была заставить аппарат провести различные компьютерные последовательности в надежде обнаружить повреждённые сектора внутри памяти FDS. Ответ от зонда был получен 3 марта. Основная его часть содержала всё тот же неразборчивый поток данных. Однако в одном из разделов FDS команда инженеров миссии обнаружила активность, которая отличалась от остального нечитаемого потока информации.

Расшифровка этой информации началась 7 марта. Спустя три дня команда NASA выяснила, что новый сигнал на самом деле содержит полный дамп памяти FSD — те самые диагностические данные, необходимые для понимания корня проблемы и поиска потенциального решения.

Команда продолжает анализ полученных данных, уточняют в NASA. Однако использование этой информации для разработки потенциального решения и попытки применить его на практике потребует времени.

Зонд «Юнона» в последний раз сблизился с самым вулканически активным телом в Солнечной системе

В субботу, 3 февраля, космический аппарат NASA «Юнона» (Juno) в последний раз совершил максимально близкий пролёт рядом со спутником Юпитера Ио. Это самое вулканически активное небесное тело в Солнечной системе. На Ио зарегистрировано около 400 действующих вулканов. Его осмотры «Юноной» позволят понять, что стоит за этой активностью и есть ли на спутнике глобальный океан из магмы.

 Источник изображения: NASA

Источник изображений: NASA

На Ио буквально может быть океан огня. Такой активности этого спутника в основном подозревают гравитацию Юпитера, которая постоянно деформирует его тело и, тем самым, вызывает разогрев недр. По совокупности факторов, включая полное отсутствие льда на поверхности Ио, этот мир кардинально отличается от всех остальных лун Юпитера и тем он ценен для учёных.

Зонд NASA «Юнона» совершил два максимально близких пролёта рядом с Ио. Оба они прошли на высоте около 1500 км над его поверхностью. Предыдущий близкий пролёт состоялся 30 декабря 2023 года, а последний, как сказано выше, 3 февраля 2024 года. В дальнейшем «Юнона» совершит ещё несколько облётов Ио, но на гораздо большей высоте.

В близкие пролёты зонд фиксировал не только активность вулканов, но смог заметить даже потоки лавы из жерл и трещин в коре Ио. Облёты на большой дистанции позволят по-прежнему следить за вулканической активностью спутника и дадут возможность больше узнать о её природе и закономерностях.

Межпланетная станция «Психея» передала на Землю первые изображения

Межпланетная станция NASA Psyche («Психея») передала на Землю первые изображения с камер. Калибровка и тестирование показали, что мультиспектральные камеры (их у аппарата две одинаковые) работают в пределах нормы и готовы к выполнению миссии. Проверка других систем также не вызвала вопросов. Аппарат начнёт научную работу в 2029 году во всеоружии.

 Источник изображения: NASA

Источник изображения: NASA

Станция «Психея» отправилась в космос 13 октября 2023 года. Цель миссии — достичь одноимённого астероида между орбитами Марса и Юпитера. Произойдёт это в 2029 году. Предполагается, что астероид «Психея» — это ядро несформировавшейся планеты, которое не изменилось со времён зарождения Солнечной системы. Изучение такого объекта может дать представление о строении земного ядра, до которого мы просто не в состоянии добраться, хотя оно лежит у нас под ногами.

Станция «Психея» находится в пути около восьми недель. Первый свет — первые изображения с пары камер — получен 4 декабря. Камеры сделали снимки звёздного поля в созвездии Рыб. Поскольку камеры-близнецы станции многоспектральные, что поможет в дальнейшем идентифицировать минералы и металлы на поверхности астероида, снимки делаются через ряд светофильтров. Вся система требовала тестирования и калибровки, с чем команда инженеров NASA успешно справилась. Всего было сделано 68 снимков. Благодаря паре одинаковых камер получится создать точнейшую 3D-карту поверхности астероида.

Камеры будут включены ещё раз при пролёте Марса. Произойдёт это в 2026 году. Кроме получения снимков научные приборы станции будут собирать другую информацию. Например, только в космосе удалось полноценно протестировать сверхчувствительный магнитометр. На Земле он давал погрешность из-за магнитного поля планеты, но в открытом космосе на удалении свыше 10 млн км удалось в полной мере его протестировать. Сама станция и её электронные приборы, кстати, как убедились инженеры, не оказывают существенного влияния на показания магнитометра, что важно для будущих измерений параметров очевидно металлического астероида.

Магнитометр на борту станции всю дорогу будет следить за космической погодой. Он способен улавливать выбросы коронарной массы Солнца и делал это неоднократно с момента включения. Это обогатит наши знания о солнечной плазме далеко за орбитой Земли.

Из других достижений станции можно отметить запуск 8 ноября двух из четырёх основных ионных двигателей. Это первое в истории использование ракетных двигателей на эффекте Холла в дальнем космосе. До сих пор они использовались только на космических аппаратах, выходящих на лунную орбиту. Выбрасывая ионы газа ксенона, сверхэффективные двигатели будут нести космический аппарат к астероиду (путь в 3,6 млрд км) и помогут ему маневрировать на его орбите.

14 ноября станция провела первый сеанс связи по лазерному каналу из относительно дальнего космоса — с расстояния около 16 млн км. Работала установка Deep Space Optical Communications (DSOC), которая передала на Землю пакет данных и приняла обратную передачу. Это была самая дальняя демонстрация оптической связи в истории. Наконец, команда Psyche также успешно включила датчик гамма-излучения в третьем научном приборе — гамма- и нейтронном спектрометре. Затем, в районе 11 декабря, будут включены нейтронные датчики прибора. Все эти возможности помогут команде определить химические элементы, из которых состоит материал поверхности астероида.

Зонд «Юнона» сфотографировал  Ио — насыщенный вулканами спутник Юпитера — с расстояния 11 тыс. км

Зонд NASA Juno («Юнона») с успехом продолжает работать даже через много лет после завершения своей основной научной программы по изучению системы Юпитера. Сейчас аппарат совершает манёвры по максимально близкому пролёту к спутнику Юпитера Ио. Это самое вулканически активное тело в Солнечной системе. И мы впервые наблюдаем его с относительно близкого расстояния.

 Ио с расстояния 11 тыс. км. Источник изображения: NASA

Ио с расстояния 11 тыс. км. Источник изображения: NASA

Зонд «Юнона» произвёл очередное сближение с Ио в минувшие выходные — 15 октября. Камера зонда сделала более дюжины снимков Ио с расстояния в 11 680 км, что в два раза ближе, чем до этого. Это самые чёткие и лучшие снимки спутника со времён миссии Galileo, которая проходила с 1995 по 2003 годы. А Ио достоин особого внимания! Гравитационное воздействие на эту луну самого Юпитера и остальных его ближайших лун настолько велико, что недра Ио находятся в постоянном движении, что сопровождается непрекращающейся вулканической активностью.

 Ио на фоне Юпитера

Ио на фоне Юпитера

На Ио замечено около 400 вулканов, 150 из которых всегда одновременно активны. На новых снимках ещё до их финальной обработки заметно, по меньшей мере, четыре шлейфа выбросов от вулканической деятельности этой луны. Позже NASA предоставит полученные изображения в красивой обработке. Но даже в первоначальном виде чёткость снимков поражает воображение. А ведь это ещё не всё! В следующие пролёты мимо Ио «Юнона» сблизится с ним до 1500 км, что произойдёт 30 декабря 2023 года и 3 февраля 2024 года.

 Серия снимков Ио во время его пролёта «Юноной» 15 октября 2023 года

Серия снимков Ио во время его пролёта «Юноной» 15 октября 2023 года

window-new
Soft
Hard
Тренды 🔥
Новая статья: Компьютер месяца, спецвыпуск: 10 тезисов о том, как лучше собрать по-настоящему мощный игровой ПК 3 ч.
Meta построит ещё один «палаточный» ИИ ЦОД 5 ч.
BYD по итогам прошедших трёх кварталов этого года опережает Tesla на 388 000 проданных электромобилей 21 ч.
Apple прекратила называть Watch и Mac mini углеродно нейтральными изделиями из-за нового закона 23 ч.
Один из самых редких Intel Pentium 4 показался на фото 04-10 16:21
Разработчиков квантовых компьютеров заливают деньгами — их акции взлетели на 20 % за неделю 04-10 15:43
Орбита станет вдвое безопаснее, если убрать всего 50 объектов — две трети из них запустили СССР и Россия 04-10 14:33
SpaceX Falcon 9 совершила 125-й полёт в этом году — весь остальной мир выполнил меньше пусков 04-10 13:39
Основатель Amazon пророчит эпоху космических ЦОД гигаваттного масштаба 04-10 13:21
Fujitsu и NVIDIA создадут вычислительную ИИ-инфраструктуру нового поколения 04-10 12:56