реклама
Теги → лазерная космическая связь

NASA с помощью лазеров передало 4K-видео с самолёта на МКС и обратно —  так готовятся к прямой трансляции высадки на Луну

Специалисты исследовательского центра NASA им. Гленна в Кливленде (США) успешно протестировали лазерную связь в космосе, отправив потоковое видео 4K с самолёта на Международную космическую станцию (МКС) и обратно. Этот эксперимент стал частью серии испытаний новой технологии, которая позволит обеспечить прямую видеотрансляцию высадки астронавтов на Луну в ходе миссии «Артемида».

 Источник изображения: NASA/Dave Ryan

Источник изображения: NASA/Dave Ryan

NASA использует радиосигналы для отправки данных и общения с астронавтами в космосе, но лазерная связь с использованием инфракрасного света позволяет передавать данные в 10–100 раз быстрее.

 Источник изображений: NASA/Sara Lowthian-Hanna

Источник изображений: NASA/Sara Lowthian-Hanna

Специалисты NASA установили портативный лазерный терминал на самолёте Pilatus PC-12, с которого данные были отправлены на наземную станцию ​​в Кливленде. Затем они были отправлены по наземной сети на испытательный полигон NASA White Sands Test Facility (WSTF) в Нью-Мексико, откуда учёные с помощью инфракрасного лазера отправили их на спутник Laser Communications Relay Demonstration (LCRD), находящийся на орбите на расстоянии 22 тыс. миль (35,4 тыс. км). Со спутника сигнал поступил на систему ILLUMA-T на МКС, после чего его отправили назад на Землю.

 Источник изображений: NASA/Sara Lowthian-Hanna

Источник изображений: NASA/Sara Lowthian-Hanna

В ходе эксперимента использовалась новая система High-Rate Delay Tolerant Networking (HDTN), разработанная в испытательном центре NASA им. Гленна, которая позволила сигналу более эффективно проходить через в облачный слой.

«Такие эксперименты являются огромным достижением, — заявил доктор Дэниел Рэйбл (Daniel Raible), главный исследователь проекта HDTN в испытательном центре. — Теперь мы можем опираться на успех потоковой передачи видео 4K HD на космическую станцию ​​и обратно, чтобы предоставить будущие возможности, такие как видеоконференции с качеством HD, для наших астронавтов миссии “Артемида”, что важно для контроля здоровья экипажа и координации деятельности».

Зонд «Психея» связался с Землёй по лазерному лучу с расстояния 226 млн км — скорость достигла 25 Мбит/с

В NASA сообщили, что 8 апреля провели очередное испытание дальней космической связи по оптическому каналу. Оптика должна многократно поднять скорость связи с далёкими станциями и будущей марсианской базой в частности. Для этого зонд NASA «Психея» (Psyche) несёт на борту экспериментальную лазерную установку. Сеанс связи с зондом состоялся, когда тот был на удалении 226 млн км от Земли, что в полтора раза больше, чем расстояние между Солнцем и Землёй.

 Источник изображения: NASA

Источник изображения: NASA

Согласно ожиданиям разработчиков, скорость оптической связи в космосе на удалении в несколько сотен миллионов километров для экспериментальной установки на борту «Психеи» должна была быть не менее 1 Мбит/с. По факту лазер передатчика зонда, работающий в ближнем инфракрасном диапазоне, передал на Землю пакет данных со скоростью 25 Мбит/с, чем очень удивил команду миссии. Это лучше всяких слов доказало, что концепция дальней космической оптической связи по сути верна и успешно реализуется. По крайней мере, в экспериментальных установках.

На более близких дистанциях скорость оптической связи ощутимо выше. Например, первый сеанс оптической связи с «Психеей» состоялся, когда она улетела от Земли на 31 млн км. На таком удалении скорость передачи данных из космоса достигла 267 Мбит/с. Подобные скорости в оптике будут на один–два порядка выше, чем в радиочастотном диапазоне. Тот же телескоп «Уэбб» имеет радиочастотный канал связи с Землёй шириной 28 Мбит/с. Оптика на порядок увеличила бы его пропускную способность.

Блок лазерного приёмопередатчика «Психеи» не предназначен для передачи научных данных с борта зонда на Землю. Для демонстрации и испытаний возможностей оптической связи видео и другие данные были записаны в него ещё на Земле. Тем не менее, команда зонда смогла продублировать передачу фрагмента инженерных данных с борта зонда по оптическому каналу в то же время, как эти данные передавались по основному радиоканалу. Тем самым NASA получило возможность заявить, что впервые по оптике были переданы инженерные данные с борта космического корабля из глубокого космоса.

Также был поставлен другой эксперимент, когда одна наземная станция по мощному лазеру передала большой пакет данных на зонд, а зонд передал их обратно на другую наземную станцию (на телескоп Паломарской обсерватории Калифорнийского технологического института в округе Сан-Диего, Калифорния). Пакет данных совершил путешествие туда и обратно, проделав в космосе путь дальностью 450 млн км. Наконец, была проверена возможность принимать оптический сигнал с «Психеи» одновременно двумя станциями (на два далеко разнесённых телескопа). Такая возможность может поднять скорость передачи данных (за счёт снижения уровня ошибок, надо полагать), а также обеспечит канал связи, даже если над одной из станций приёма будет облачно, что для лазера станет непробиваемой стеной.

NASA протестирует систему лазерной передачи данных в космосе с потенциальной скоростью до 400 Мбит/с

Американское аэрокосмическое агентство NASA отправит в космос лазерный приёмопередатчик ближнего инфракрасного диапазона для тестирования системы, которую однажды можно будет использовать для связи с астронавтами на Марсе.

 Зонд Psyche в сборочном цехе. Источник изображений: NASA/JPL-Caltech

Зонд Psyche в сборочном цехе. Источник изображений: NASA/JPL-Caltech

Необходимое оборудование системы Deep Space Optical Communications (DSOC) планируется отправить вместе с автоматической межпланетной станцией Psyche, предназначенной для изучения астероида «Психея». Запуск космического аппарата запланирован на 5 октября. Полёт к астероиду диаметром 225 км, находящемуся в поясе астероидов между орбитами Марса и Юпитера и состоящему в основном из железа и никеля, займёт около двух лет. В это время оборудование DSOC будет тестироваться для связи с двумя наземными станциями, расположенными в Южной Калифорнии.

В NASA считают, что лазеры DSOC ближнего инфракрасного диапазона могут от 10 до 100 раз превзойти эффективность передачи данных по сравнению с самыми передовыми радиосистемами, использующимися сегодня в космосе. Возможность обеспечения широкополосной лазерной связи в космосе была доказана для околоземной орбиты и в рамках коммуникации со спутниками на орбите Луны, но дальний космос ставит новые задачи в этом вопросе.

Марсоход Perseverance, находящийся на поверхности Красной планеты, может связываться с орбитальными аппаратами со скоростью 2 Мбит/с. Орбитальный марсианский зонд Reconnaissance Orbiter в свою очередь может передавать данные на Землю со скоростью от 0,5 до 4 Мбит/с. Повышение этих скоростей с помощью лазеров в 10–100 раз имеет очевидное преимущество, даже с учётом того факта, что предел скорости света не позволяет организовать синхронную связь между Землёй и Марсом.

Система DSOC использует свет ближнего инфракрасного диапазона, способный нести больше информации по сравнению с радиоволнами, что позволяет наземным станциям одновременно получать больше данных. Аппараты, находящиеся в дальнем космосе, с помощью такой системы коммуникации смогут отправлять на Землю более подробные изображения или даже видео, снятые с их камер.

 Телескоп Хейла в Паломарской обсерватории Калифорнийского технологического института в округе Сан-Диего, Калифорния

Телескоп Хейла в Паломарской обсерватории Калифорнийского технологического института в округе Сан-Диего, Калифорния

Для получения команд приёмопередатчик DSOC будет использовать камеру зонда, прикреплённую к телескопу с апертурой 22 см, для автоматического сканирования и захвата восходящей линии связи лазера ближнего инфракрасного диапазона, передаваемого из лаборатории NASA Optical Communication Telescope Laboratory в Райтвуде, Калифорния. Он также будет передавать данные на 5,1-метровый телескоп Хейла в Паломарской обсерватории Калифорнийского технологического института в округе Сан-Диего, Калифорния, расположенного примерно в 130 километрах от OCTL.

 Лаборатории NASA Optical Communication Telescope Laboratory в Райтвуде, Калифорния

Лаборатории NASA Optical Communication Telescope Laboratory в Райтвуде, Калифорния

Для погашения любых шумов в сигнале детектор фотонов, использующийся в телескопе Хейла, охлаждается криогенно. Благодаря этому он сможет эффективнее обнаруживать лазерные передачи от DSOC. По мере удаления аппарата Psyche от Земли и его приближения к астероиду «Психея» время, необходимое для отправки и получения сигналов от DSOC, будет постепенно увеличиваться. Ожидается, что максимальное расстояние, на котором будет проводиться передача данных с помощью системы DSOC, составит более 300 млн км.

Чтобы гарантировать улавливание лазерным приёмопередатчиком DSOC восходящего сигнала связи с Земли инженеры оснастили космический аппарат Psyche специальными распорками, которые надёжно удерживают его телескоп на месте, предотвращая воздействие на него вибраций.

«Каждый компонент DSOC представляет собой новую технологию — от мощных лазеров восходящей линии связи до системы наведения приёмопередатчика телескопа и чрезвычайно чувствительных сенсоров, которые могут улавливать отдельные фотоны. Команде проекта даже пришлось разработать новые методы обработки сигналов, чтобы иметь возможность максимально повысить эффективность получения информации из таких слабых сигналов, передаваемых на огромные расстояния», — прокомментировал руководитель проекта DSOC Билл Клипштейн (Bill Klipstein) из Лаборатории реактивного движения.

window-new
Soft
Hard
Тренды 🔥
Новая статья: Верные спутники: 20+ полезных Telegram-ботов для путешественников 20 мин.
Итоги Golden Joystick Awards 2024 — Final Fantasy VII Rebirth и Helldivers 2 забрали больше всех наград, а Black Myth: Wukong стала игрой года 2 ч.
В программу сохранения классических игр от GOG вошли S.T.A.L.K.E.R. Shadow of Chernobyl и Call of Pripyat, а Clear Sky — на подходе 3 ч.
Star Wars Outlaws вышла в Steam с крупным обновлением и дополнением про Лэндо Калриссиана 5 ч.
Рекордная скидка и PvP-режим Versus обернулись для Warhammer: Vermintide 2 полумиллионом новых игроков за неделю 6 ч.
Новый трейлер раскрыл дату выхода Mandragora — метроидвании с элементами Dark Souls и нелинейной историей от соавтора Vampire: The Masquerade — Bloodlines 7 ч.
В Японии порекомендовали добавить в завещания свои логины и пароли 9 ч.
Обновления Windows 11 больше не будут перезагружать ПК, но обычных пользователей это не касается 9 ч.
VK похвасталась успехами «VK Видео» на фоне замедления YouTube 11 ч.
GTA наоборот: полицейская песочница The Precinct с «дозой нуара 80-х» не выйдет в 2024 году 12 ч.
Представлен внешний SSD SanDisk Extreme на 8 Тбайт за $800 и скоростной SanDisk Extreme PRO с USB4 2 ч.
Представлен безбуферный SSD WD_Black SN7100 со скоростью до 7250 Мбайт/с и внешний SSD WD_Black C50 для Xbox 2 ч.
Новая статья: Обзор ноутбука ASUS Zenbook S 16 (UM5606W): Ryzen AI в естественной среде 2 ч.
Redmi показала флагманский смартфон K80 Pro и объявила дату его премьеры 4 ч.
Астрономы впервые сфотографировали умирающую звезду за пределами нашей галактики — она выглядит не так, как ожидалось 7 ч.
Представлена технология охлаждения чипов светом — секретная и только по предварительной записи 8 ч.
Японская Hokkaido Electric Power намерена перезапустить ядерный реактор для удовлетворения потребности ЦОД в энергии 8 ч.
Грузовик «Прогресс МС-29» улетел к МКС с новогодними подарками и мандаринами для космонавтов 8 ч.
Meta планирует построить за $5 млрд кампус ЦОД в Луизиане 9 ч.
Arm задаёт новый стандарт для ПК, чтобы навязать конкуренцию x86 9 ч.