реклама
Теги → магнит

В Китае создали самый мощный в мире электромагнит без сверхпроводимости

Учёные из Китая представили электромагнит, не использующий сверхпроводимость, который установил мировой рекорд — он создал устойчивое электромагнитное поле силой 42 Тл (тесла), побив предыдущий рекорд аналогичной американской установки на 0,6 Тл. Такое мощное магнитное поле необходимо как для разработки ещё более сильных магнитов, так и для решения множества актуальных материаловедческих задач.

 Источник изображения: HFIPS

Источник изображения: HFIPS

В последние годы создание мощнейших магнитных полей стало проще благодаря использованию сверхпроводимости. С учётом криогенного охлаждения это связано с меньшими затратами энергии на сам процесс и позволяет добиваться ещё более высоких значений напряжённости магнитного поля. Та же команда китайских учёных, например, с помощью гибридной сверхпроводящей магнитной установки два года назад достигла напряжённости магнитного поля в 45,2 Тл.

Однако использование обычных электромагнитов, иногда называемых резистивными (поскольку в их катушках ток испытывает сопротивление при циркуляции по контуру), в ряде случаев оказывается более выгодным. По крайней мере, для них не требуется криогенного оборудования, хотя без активного охлаждения обойтись всё равно нельзя — обмотка сильно нагревается. В таких случаях для оптимального охлаждения мощных электромагнитов был придуман магнит Биттера.

 Пример одного из витков магнита Биттера из медной пластины. Источник изображения:

Пример одного из витков магнита Биттера из медной пластины. Источник изображения: Wikipedia

Магнит Биттера состоит из чередующихся слоёв проводящих и изолирующих материалов, в которых просверлены отверстия, создающие рисунок пространственной спирали. Магнитное поле в магните как бы фокусируется под ним, достигая запредельных значений, а по отверстиям с огромной скоростью циркулирует вода или другой хладагент, отводя тепло от обмоток. Китайские учёные смогли опередить своих коллег из США, создав более совершенную электромагнитную установку, и обещают в будущем превзойти этот результат.

Ученые создали из графита материал с магнитной левитацией без внешнего питания

Магнитная левитация широко используется для скольжения без трения в игрушках, приборах, фурнитуре и даже в поездах (маглевах). Но всё это работает от внешних источников питания и иногда очень мощных, если мы говорим о сверхпроводящих магнитах для левитирующих поездов. С постоянными магнитами чуть проще, но там свои ограничения. Учёные из Японии попытались соединить оба магнитных эффекта в одном устройстве и кое-что из этого вышло.

 Источник изображений: OIST

Источник изображений: OIST

Для своего исследования учёные из Окинавского института науки и технологий (OIST) взяли обычный графит. Этот материал известен своими диамагнитными свойствами. Он может приобретать намагниченность в наведённом магнитном поле и благодаря ей на некоторое время приобретает способность левитировать над магнитами. Это свойство появляется вместе с возникновением вихревых токов в материале. Правда, эти токи быстро иссякают ввиду высокой проводимости графита, но это оказалось поправимо.

 Материал под электронным микроскопом (зелёный — это оксид кремния вокруг графита)

Материал под электронным микроскопом (зелёный — это оксид кремния вокруг графита)

Японцы заключили крупицы графита в оболочку из оксида кремния, который является отличным диэлектриком. Затем они с помощью воска создали из таких крупинок пластинки площадью по 1 см2. Придав площадкам намагниченность, им создали условия для левитации над постоянными магнитами. Благодаря хорошей токоизоляции крупинок графита в материале, вихревые токи в них долго не затухали, обеспечивая образцам достаточно длительную левитацию без внешней подпитки.

В поездах на магнитных подушках подобный материал вряд ли появится. Всё-таки, там другой уровень энергии и мощностей. Но эта технология может найти применение в датчиках — силы, ускорения и других. Возможны даже датчики с обратной связью, хотя в этих случаях придётся использовать питание. Зато этим можно будет увеличить чувствительность измерений вплоть до использования в квантовых системах, уверены учёные.

window-new
Soft
Hard
Тренды 🔥
Инженеры Apple усомнились в готовности новой Siri к весеннему запуску в iOS 26.4 3 ч.
Неактивные логины в X станут товаром на новом маркетплейсе 3 ч.
Ускорителей хватит на всех — Alibaba Aegaeon оптимизировал обработку ИИ-нагрузок, снизив использование дефицитных NVIDIA H20 на 82 % 7 ч.
OpenAI не выпустит GPT-6 до конца 2025 года 12 ч.
Google свернула проект Privacy Sandbox после шести лет разработки 19-10 05:43
Новая статья: Ghost of Yotei — месть, расцветшая с сакурой. Рецензия 19-10 00:02
Новая статья: Gamesblender № 748: подробности PS6 и новой Xbox, «вселенная ужасов» Tencent и юбилей Serious Sam 2 18-10 23:35
Twitch анонсировал двухформатные эфиры, функции с ИИ и новые средства монетизации 18-10 17:54
Microsoft научила Paint в Windows 11 генерировать анимации и редактировать изображения с помощью ИИ 18-10 16:10
Meta набирает джунов без опыта на зарплату $290 тыс. в год: Цукерберг считает, что главное — это навыки 18-10 15:54