Опрос
|
реклама
Быстрый переход
Учёные создали недорогой и нетоксичный аккумулятор, который сохранит 80 % ёмкости после 8000 циклов перезарядки
15.05.2024 [23:02],
Анжелла Марина
Группа ученых из Университета Линчепинга в Швеции представила инновационную аккумуляторную батарею, способную кардинально изменить доступ к электроэнергии в странах с низким уровнем жизни. Основу новой разработки составляют экономичные и одновременно экологичные материалы из цинка и лигнина. ![]() Источник изображения: Thor Balkhed/liu.se Как отмечает автор исследования, профессор Лаборатории органической электроники Реверант Криспин (Reverant Crispin), солнечные панели уже активно применяются в бедных тропических странах. Однако с наступлением сумерек люди вновь остаются без электричества, что сильно ограничивает развитие этих регионов. С помощью же новой технологии можно накапливать избыточную энергию днём и затем использовать ее после захода солнца, сообщает сайт Liu.se. Новая перезаряжаемая батарея обещает стать дешевой и экологически чистой альтернативой литийионным аккумуляторам. Она может выдерживать более 8000 циклов перезарядки, сохранив около 80 % своей емкости. По плотности энергии новинка сопоставима со свинцово-кислотными батареями, но без использования токсичного свинца. Кроме того, она может сохранять заряд около недели, что намного дольше в сравнении с другими типами аккумуляторов. Главная проблема цинковых батарей состоит в их низкой стабильности из-за взаимодействия цинка с водой в электролите, что приводит к выделению водорода и образованию дендритов. Чтобы стабилизировать работу цинкового электрода, ученые использовали специальный водно-полимерный электролит на основе полиакрилата калия (суперабсорбент, SAP), благодаря чему новая батарея демонстрирует очень высокую стабильность при заряде-разряде. При этом стоимость одного цикла использования такой батареи значительно ниже, чем у литийионных аналогов. ![]() Reverant Crispin and Ziyauddin Khan, Источник изображения: Thor Balkhed/liu.se «Хотя литийионные батареи полезны при правильном обращении, они могут быть взрывоопасными, их сложно перерабатывать и это проблематично с точки зрения экологии, — говорит Зияуддин Хан (Ziyauddin Khan), второй автор исследования. — Таким образом, наша батарея предлагает альтернативу, где плотность энергии не имеет решающего значения». В настоящее время разработанные опытные образцы имеют небольшие размеры. Однако утверждается, что по этой технологии можно создавать более крупные экземпляры размером с автомобильные аккумуляторы. Разработка новой перезаряжаемой цинко-лигниновой батареи финансировалась рядом шведских научных фондов и государственных программ. Считается, что эта экологичная и недорогая технология имеет большой потенциал для того, чтобы стать альтернативой литий-ионным батареям в будущем. Криспин также отмечает, что Швеция, как инновационная страна, может помочь другим государствам внедрять «зеленые» технологии энергообеспечения, чтобы избежать ошибок на этапе строительства инфраструктуры, что может «привести к климатической катастрофе». Термоядерный рекорд: токамак WEST шесть минут удерживал плазму при 50 млн °C
07.05.2024 [23:25],
Анжелла Марина
Французский токамак WEST установил новый рекорд — он удерживал плазму с температурой около 50 млн градусов Цельсия в течение 6 минут. Это стало возможным благодаря использованию внутренней облицовки реактора вольфрамом — металлом с чрезвычайно высокой температурой плавления в 3420 °C. ![]() Источник изображение: Токамак WEST/CEA-IRFM Ранее токамаки (тороидальная камера с магнитными катушками) использовали углеродную облицовку, которая ограничивала время удержания и температуру плазмы. Вольфрам же позволяет достичь более высокой плотности и температуры плазмы, необходимых для поддержания термоядерной реакции. В ходе последнего эксперимента WEST затратил на запуск термоядерной реакции 1,15 ГДж энергии, сообщает издание Quartz. «Это прекрасные результаты, — сказал Ксавье Литаудон (Xavier Litaudon), ученый из Французской комиссии по атомной энергии (CEA). — Мы достигли стационарного режима, несмотря на сложные условия из-за этой вольфрамовой стенки». Исследователи из Принстонской лаборатории физики плазмы (Princeton Plasma Physics Laboratory, PPPL) принимали участие в экспериментах на WEST, используя детекторы рентгеновского излучения для измерения параметров плазмы. По их словам, вольфрамовая среда намного сложнее для работы по сравнению с углеродом, но зато открывает больше перспектив. До сих пор ни одна установка не могла удерживать столь горячую плазму столь длительное время. А ведь именно температура и время удержания являются ключевыми параметрами на пути к практическому использованию термоядерной энергии. Чем выше температура и чем дольше она поддерживается, тем больше шансов запустить самоподдерживающуюся термоядерную реакцию. Это достижение имеет важное значение для разработки коммерчески жизнеспособного термоядерного реактора. В отличие от традиционных АЭС, использующих деление ядер урана, в термоядерном реакторе происходит слияние легких атомных ядер с выделением колоссальной энергии. Потенциально это может дать практически неисчерпаемый источник энергии без радиоактивных отходов. Однако на пути к коммерциализации термоядерной энергетики еще стоит много трудностей. Нужно решить проблемы устойчивого удержания плазмы, её нагрева до температур в десятки и сотни миллионов градусов, эффективной передачи выделяемой энергии. Поэтому каждое новое достижение в этой области имеет большое значение. Интересно, что не так давно рекорд по времени удержания плазмы, в более чем в 100 миллионов градусов в течение 20 секунд, поставил корейский токамак KSTAR, заменив углеродный дивертор на вольфрамовый, который удвоил предел теплового потока реактора. Хотя практическое применение энергии термоядерного синтеза еще далеко, однако каждое подобное достижение приближает нас к заветной цели — чистому и практически неисчерпаемому источнику энергии, а роль вольфрама в этом может оказаться незаменимой. Япония и Евросоюз углубят сотрудничество в сфере разработки передовых материалов
31.03.2024 [07:47],
Алексей Разин
Альтернативная энергетика, высокопроизводительные вычисления и электротранспорт — все эти сферы деятельности для сохранения своего прогресса нуждаются в новых материалах. Власти Евросоюза намерены найти взаимовыгодные точки соприкосновения с Японией в сфере материаловедения, и предлагают создать условия для сотрудничества в сфере профильных исследований между двумя регионами. ![]() Источник изображения: Unsplash, ThisisEngineering RAEng Об этом агентству Nikkei стало известно со слов Илианы Ивановой (Iliana Ivanova) — еврокомиссара по вопросам инноваций и исследований. Во многом эта инициатива направлена на повышение суверенитета Евросоюза и Японии с точки зрения доступа к источникам сырья, поскольку в той же отрасли электротранспорта регионы сильно зависят от Китая, поставляющего значительную часть редкоземельных элементов на мировой рынок. Последние, помимо прочего, используются при производстве литийионных тяговых батарей для электромобилей. По словам европейской чиновницы, Япония и ЕС по-прежнему лидируют по признаку количества инноваций в сфере материаловедения. В 2020 году в Европе было инвестировано в соответствующую сферу почти 20 млрд евро, японские инвестиции в эту сферу составили 14 млрд евро. Обе стороны могли бы наладить взаимовыгодное сотрудничество в данной области науки и обмениваться информацией. Инициатива пока получила временное обозначение «Диалог по передовым материалам» (Dialogue on Advanced Materials), она подразумевает взаимодействие научно-исследовательских институтов Европы и Японии. Сферы сотрудничества охватят энергетику, транспорт, строительство и электронику. Одним из перспективных направлений станет совместная разработка натриево-ионных аккумуляторов, которые не только дешевле в производстве традиционных литийионных, но и не содержат редкоземельных металлов, поставляемых из Китая. Снижение зависимости Европы и Японии от Китая по сырьевым направлениям является одной из главных целей предлагаемой инициативы. Ещё одно из направлений касается повышение эффективности работы солнечных панелей, поскольку Европа весьма заинтересована в переходе на возобновляемые источники энергии, а сейчас позиции китайских поставщиков сильны и в этой сфере. Япония и ЕС также готовы способствовать формированию отраслевых стандартов в области материаловедения. Китай усилит поддержку науки и привлечёт иностранные инвестиции для достижения технологического суверенитета
05.03.2024 [13:24],
Алексей Разин
В условиях ужесточаемых санкций США и их союзников китайским компаниям не так просто добиваться успехов в сфере высоких технологий, поэтому власти КНР решили не только увеличить субсидирование национальной науки, но смягчить условия привлечения иностранных инвестиций в приоритетные отрасли экономики Китая. Главная задача всех этих мер — обеспечить технологический суверенитет страны. ![]() Источник изображения: SMIC Власти КНР призвали к общей мобилизации ресурсов для достижения поставленной цели. В свою очередь, правительство готово увеличить субсидирование национальной науки, в текущем году бюджет на поддержку исследовательских проектов в сфере высоких технологий будет увеличен на 10 % до $51,5 млрд. Компаниям, которые демонстрируют хорошие результаты в стратегически важных отраслях китайской экономики, будет предоставляться финансовая поддержка. На поддержку фундаментальных научных исследований в прошлом году в целом власти Китая потратили $458 млрд, что соответствует 2,6 % ВВП страны. Выступая перед китайскими парламентариями, премьер-министр КНР Ли Цян (Li Qiang) заявил, что нужно мобилизовать не только научные ресурсы, но и привлечь к этому процессу негосударственные источники, чтобы добиться прорыва в ключевых технологических сферах. Одновременно предлагается упростить доступ иностранных инвесторов на китайский рынок, чтобы обеспечить приток капитала в сферу естественных наук и производства высокотехнологичной продукции. Квантовые вычисления, искусственный интеллект, медицина и биотехнологии, аэрокосмическая сфера — вот те области китайской экономики, в которые власти страны желают упростить доступ иностранного капитала. Попутно планируется разработать меры поддержки молодых учёных в приоритетных отраслях и привлечения в них новых кадров. Учёные открыли новый тип сверхпроводимости в экзотическом материале, похожем на кристалл-сэндвич
22.12.2023 [23:49],
Николай Фрей
Группа физиков из Университета Вашингтона и Министерства энергетики США (DOE), похоже, открыла новую, контролируемую разновидность сверхпроводимости в экзотическом материале, похожем на кристалл. Его сверхпроводимость можно менять в зависимости от приложенной к нему деформации, вплоть до полного отключения. Одновременно с этим, по всей видимости, был побит рекорд по тому, насколько «горячим» может быть сверхпроводник с полевым эффектом, прежде чем он потеряет способность проводить электричество, не встречая никакого сопротивления. ![]() Источник изображения: Henry Mühlpfordt, Wikipedia В научной статье, опубликованной в журнале Science Advances, описывается синтетический кристаллоподобный сэндвич из ферромагнитного (европий) и сверхпроводящего материалов (арсенид железа), который демонстрирует возникающую сверхпроводимость при помещении вблизи достаточно сильного магнитного поля. Легированный кристалл EuFe2As2, а именно так называется материал из-за добавления молекул кобальта в процессе синтеза, использует преимущества сильного ферромагнетизма европия (Eu), чередующегося со сверхпроводящими слоями FeAs (арсенида железа) в конфигурации, напоминающей сэндвич. В результате получается так называемый настраиваемый магнитным полем сверхпроводник — его сверхпроводимость можно активировать с помощью внешних магнитных полей. В случае легированного кристалла EuFe2As2 (с использованием специализированного оборудования и комбинации рентгеновских методов) исследовательская группа показала, как правильно выровненное внешнее магнитное поле уравновешивает магнитные поля, исходящие от ферромагнитных европиевых слоёв. Это позволяет переориентировать их — и как только первоначально хаотичные магнитные поля становятся параллельными сверхпроводящим, возникает состояние материи с нулевым сопротивлением. Но у легированного кристалла EuFe2As2 есть ещё одно интересное свойство: его сверхпроводящие способности можно отключить даже в достаточно сильном магнитном поле. Всё, что для этого нужно, — деформировать материал с помощью криогенного тензорезистора — приложить давление с одной стороны (одноосное) с помощью специального промышленного поршня, сертифицированного для научных измерений. При этом изменяется степень сопротивления электронов при прохождении через него. При определённых уровнях деформации сверхпроводимость синтетического материала может быть повышена настолько, что для перехода в сверхпроводящее состояние не требуется внешнее магнитное поле. Но после определённого момента даже избыточное давление уже не позволяет запустить процесс. ![]() Легированный кобальтом EuFe2As2 состоит из слоев ферромагнитных атомов (синий) и сверхпроводящих атомов (золотой). (B) Приложение небольшого магнитного поля вызывает сверхпроводимость, а (C) приложение деформации может вызывать или подавлять сверхпроводимость. Источник изображения: Argonne National Lab / University of Washington Исследователи отметили трудности в процессе синтеза. Так, группа не смогла определить, что помешало получить в результате синтеза стабильные образцы EuFe2As2, легированного кобальтом; вместо этого они сообщили о «значительной вариативности образцов», где под вариативностью понимается наличие или отсутствие сверхпроводимости, вызванной полем. Исследователи также указали, что трудности, скорее всего, возникли на этапе легирования кобальтом, что подтверждает, насколько сложно контролировать квантовые процессы (например, химические реакции) на уровне точности, которого требуют некоторые из этих синтетических материалов, являющихся носителями сверхпроводимости. Тонкие, субатомные изменения и взаимодействия элементов — это действительно всё, что требуется для превращения материала из полупроводника в сверхпроводник. Но за этой простотой скрывается сложное взаимодействие элементов, частиц и субатомных частиц, спинов, магнитных полей и многих других параметров, которые должны быть строго такими, как нужно — или, в случае с образцами в исследовании, находится при температуре между 4 и 10 Кельвинами. Такой уровень разрешения и контроля за моментом «выключения» сверхпроводимости (что то же самое, что и момент «включения», но в особом, квантовом смысле) должен дать бесценные сведения о квантовой физике сверхпроводимости. По крайней мере, вновь открытый сверхпроводник может стать испытательным стендом для лучшего понимания самой сверхпроводимости. Исследование подводит к возможности увидеть молекулярный переход от обычной материи к её сверхпроводящей фазе и должна повысить нашу способность контролировать этот эффект и извлекать из него дальнейшую пользу. К примеру, это открытие может найти применение в сверхпроводящих цепях для промышленной электроники следующего поколения. |