Опрос
|
реклама
Быстрый переход
Microsoft заказала строительство термоядерного реактора
10.05.2023 [17:51],
Павел Котов
Microsoft заключила соглашение с компанией Helion Energy, которая обязалась построить для софтверного гиганта первый в мире коммерческий термоядерный реактор. Управляемый термоядерный синтез долгое время считался Святым Граалем энергетики — потенциально безграничным экологически чистым источником энергии, который учёные пытались построить не одно десятилетие. ![]() Trenta — один из прототипов реактора Helion. Источник изображения: helionenergy.com Helion Energy считает, что сможет построить термоядерный реактор для Microsoft к 2028 году — он должен будет вырабатывать не менее 50 МВт электричества. Задача крайне сложная. Даже самые оптимистичные оценки учёных по поводу создания термоядерных электростанций варьируются от конца текущего десятилетия до нескольких десятилетий вперёд. Успех компании будет зависеть от возможности совершить технологический прорыв за невероятно короткий промежуток времени, а затем вывести технологию на рынок и сделать её конкурентоспособной по стоимости в сравнении с другими источниками энергии. Но Helion это не смущает, как и предусмотренные соглашением финансовые санкции в случае неудачи. Термоядерный синтез фактически повторяет то, как в звёздах образуются свет и тепло. В случае с Солнцем это формирование атомов гелия из водорода и выделение больших объёмов энергии. С пятидесятых годов прошлого века учёные пытаются воспроизвести этот процесс контролируемым образом — масштабно получалось только неконтролируемым, например, в случае с водородной бомбой. Эта технология противоположна атомным электростанциям, на которых энергия высвобождается путём деления или расщепления атомов. Главным недостатком расщепления являются остающиеся после него нестабильные ядра — радиоактивные отходы. В случае с термоядерным синтезом они не образуются, поскольку при реакции, по сути, просто появляются новые атомы гелия. ![]() Источник изображения: efes / pixabay.com Сегодня управляемый термоядерный синтез пытаются воспроизвести, обстреливая вещество мощными лазерными лучами или удерживая магнитными полями плазму в машине, называемой токамаком. Helion решила пойти своим путём, построив 12-метровый плазменный ускоритель, в котором топливо будет разогреваться до 100 млн °C. Изотоп водорода дейтерий и гелий-3 будут нагреваться до плазменного состояния и сжиматься магнитными полями до тех пор, пока не запустится реакция синтеза. Компания утверждает, что при этом будет выделяться больше энергии, чем расходоваться — до недавнего времени учёным это не удавалось, и лишь в минувшем декабре прорыва удалось достичь исследователям Ливерморской национальной лаборатории им. Э. Лоуренса (LLNL). Helion только предстоит достичь этого этапа. Ещё одним потенциальным препятствием является необходимость получить достаточное количество гелия-3 в качестве топлива, хотя в компании утверждают, что у них есть запатентованная технология получения этого редкого изотопа из атомов дейтерия. Наконец, полученная в термоядерном реакторе электроэнергия должна быть доступной, сравнимой по цене с производимой на традиционных электростанциях. Helion не уточнила, какую цену согласовала в контракте с Microsoft, но в конечном итоге компания собирается выйти на $0,01 за 1 кВт·ч. В Троицке начали строить комплекс под токамак, в котором будут испытывать термоядерные и космические технологии
02.05.2023 [15:37],
Геннадий Детинич
В апреле с опережением графика на полигоне в московском Троицке начата выемка грунта под будущий комплекс для ряда перспективных термоядерных проектов и не только. Завершение строительства ожидается в 2024 году. После этого последует установка оборудования. Изюминкой комплекса станет токамак с реакторными технологиями (ТРТ) который станет мощным источником нейтронов и прототипом масштабной энергетической установки нового поколения. ![]() Источник изображения: ГНЦ РФ ТРИНИТИ Расчистка территории под комплекс и строительство дорог и другой инфраструктуры стартовали в марте прошлого года. Непосредственно строительные работы и первая выемка грунта начались в апреле этого года. Технический старт строительству дало второе заседание координационного совета участников строительства инфраструктурных объектов, которые возводятся в рамках федерального проекта по термоядерным и плазменным технологиям комплексной программы развития атомной науки, техники и технологий (КП РТТН). Собрание прошло в Троицке в начале прошлого месяца. ![]() Модель прототипа модифицированного токамака с сильным полем (ТРТ). Источник изображения: Наука и инновации Будущий комплекс будет востребован для испытаний элементов термоядерных реакторов и плазменных ракетных двигателей. Помимо этого он также может быть задействован при производстве ряда изотопов для ядерной медицины, особенно короткоживущих. К 2030 году в составе комплекса начнёт работать Токамак с реакторными технологиями (ТРТ). Это будет площадка для испытаний перспективных термоядерных технологий, включая выработку трития, проработку бланкетных технологий, методов дополнительного нагрева плазмы, разработку новых диагностик и, в целом, исследование поведения плазмы в близких к зажиганию квазистационарных режимах. Китай зажёг «искусственное солнце» почти на 7 минут — это новый рекорд
13.04.2023 [15:16],
Геннадий Детинич
Китайские источники сообщают, что экспериментальный китайский термоядерный реактор Experimental Advanced Superconducting Tokamak (EAST, токамак HT-7U), расположенный в городе Хэфэй провинции Аньхой, установил новый мировой рекорд по длительности поддержания высокотемпературной плазмы. В одном цикле реактор работал непрерывно 403 с, побив свой предыдущий рекорд в 101 с. ![]() Experimental Advanced Superconducting Tokamak снаружи. Источник изображения: SCMP К сожалению, это вся официальная информация, которая есть о данном событии. Источники не раскрывают, в каком режиме работал реактор и до какой температуры была разогрета плазма и, что важно, о какой плазме идёт речь — об электронной или ионной, что тоже принципиально. Если взять за основу сравнение с предыдущим экспериментом, то речь может идти о разогреве в плазме электронов до температуры 120 млн °C. Для запуска термоядерной реакции синтеза в реакторе необходимо разогреть в плазме не электроны, а ионы — до температуры свыше 100 млн °C, а они тяжелее электронов и на их разогрев требуется едва ли не в два раза больше энергии. Поэтому до появления новой информации будем считать, что EAST установил рекорд по удержанию в течение 403 секунд плазмы с температурой электронов в жгуте на уровне 120 млн °C. Ранее EAST также смог удивить экспериментом с удержанием разогретой до 70 млн °C электронной плазмы в течение 17 мин и 36 с (1056 с). Также он смог удержать 20 с разогретую до 160 млн °C электронную плазму. Рекорд по разогреву ионной плазмы пока принадлежит Южной Корее (реактору KSTAR), который 30 с удерживал в жгуте плазмы ионы, разогретые до 100 млн °C. Что важно, хотя китайцы не запустили у себя такой масштабный проект термоядерного реактора, как ИТЭР (хотя они участвуют в нём), у них уже в целом готов проект 2-ГВт термоядерной электростанции CFETR (China Fusion Engineering Test Reactor). Электростанция CFETR должна начать работу в 2035 году или около того, в то время как аналогичный европейский проект DEMO едва-едва приблизится к завершению проектирования. Тем самым Китай собирается первым в мире поставить себе на службу «искусственное солнце», что очень и очень амбициозно. Первый в России за 20 лет термоядерный реактор Т-15МД получил первую плазму и «выходит на мировые параметры»
13.04.2023 [10:54],
Геннадий Детинич
Вчера во время празднования 80-летнего юбилея Национального исследовательского центра «Курчатовский институт» глава учреждения Михаил Ковальчук сообщил, что модернизированный термоядерный реактор Т-15МД получил первую плазму. Установка поможет в исследованиях по множеству проектов от поддержки ИТЭР до создания источника нейтронов, и подтолкнёт в развитии как отечественную науку, так и партнёрские проекты за рубежом. ![]() Источник изображения: РИА Новости/Дмитрий Астахов «Получена устойчиво плазма, миллионы градусов. Он [токамак] с первого момента запустился. Сложнейшая дорогостоящая установка запустилась сразу и сейчас работает, набирает мощность и выходит на мировые параметры. <...> Устойчиво работает», — сказал Ковальчук, которого цитирует агентство ТАСС. Токамак Т-15МД — термоядерный реактор для проведения реакций ядерного синтеза в форме тора (пончика или бублика) с магнитным удержанием плазмы — стал продолжением развития проектов токамаков в Курчатовском институте. Он построен на базе проекта установки Т-15, запущенной в институте в конце 80-х годов прошлого века, и стал первым в стране за последние 20 лет. Утверждается, что по совокупности характеристик аналогов этой установке в мире нет. В частности, Т-15МД сочетает компактность и высокую мощность. Фактический запуск установки без получения плазмы состоялся в мае 2021 года в присутствии премьер-министра РФ Михаила Мишустина. Термоядерная энергия представляется как едва ли не бесконечный источник чистой и безопасной энергии. Для её получения нужны изотопы водорода, которых на Земле буквально океаны. Учёные наткнулись на способ сделать термоядерные реакторы более компактными или мощными
12.04.2023 [15:33],
Геннадий Детинич
Учёные из Института физики плазмы им. Макса Планка (IPP) в процессе работы на токамаке ASDEX Upgrade в Гархинге (недалеко от Мюнхена) сделали открытие, которое может привести к созданию как более компактных термоядерных реакторов, так и повысить мощность реакторов без увеличения размеров сосуда для плазмы. В серии экспериментов они показали, что плазменный жгут можно почти вплотную приблизить к стенкам камеры без риска их повреждения. ![]() X-point испускает УФ-свет и видимый синий свет. Красная дуга — край плазменного жгута. Источник изображения: MPI für Plasma Physics Как известно, плазма внутри рабочей камеры термоядерного реактора типа токамак — вакуумного сосуда в виде пончика — удерживается вдали от стенок сильным магнитным полем. Если плазменный жгут коснётся стенки сосуда, он её легко повредит. В современных проектах реакторов токамаков, как и в случае проекта ИТЭР, жгут плазмы температурой свыше 100 млн °C удерживается сравнительно далеко от стенок. В случае реактора ASDEX Upgrade, например, который некоторым образом служит прообразом ИТЭР, от края плазмы до дивертора всегда было не менее 25 см. Теперь учёные показали, что это расстояние можно уменьшить до менее чем 5 см. Добавившийся объём в сосуде можно заполнить плазмой и повысить мощность реактора, а можно сделать сосуд меньшего размера и в итоге спроектировать термоядерную электростанцию меньшего размера без потери мощности. Кроме того, конструкция дивертора — который будет служить для съёма полезной мощности и для синтеза в будущем изотопов гелия-4 — станет проще. Сегодня диверторы защищаются вольфрамовыми плитками, и в будущем от этого можно будет уйти. Суть сделанного открытия в том, что обнаружился эффект повышенного преобразования тепла от границ плазменного жгута в излучение в ультрафиолетовом диапазоне. Если открытие будет подтверждено, появится возможность создавать условия для более точного управления краями плазмы, включая повышенное преобразование тепла в УФ-излучение — это так называемый излучатель точки X (сокращенно XPR), который кроме УФ-излучения испускает также видимый свет в синем спектре. Эффект возникает, когда в плазму специально добавляют немного примеси (часто это может быть азот). Эффект является управляемым и может стать средством для контроля падающей на дивертор мощности. Диверторы ИТЭР, которые, кстати, изготавливаются в России, смогут выдерживать не более 10 МВт/м2. Без магнитного экранирования до стенок дивертора дошло бы до 20 % мощности плазмы или до 200 МВт/м2. Управляемая добавка примесей в плазму наряду с магнитной клеткой удерживает стенки дивертора от перегрева и разрушения. ![]() Кассета дивертора и её расположение в реакторе. Источник изображения: ИТЭР «Излучатель точки X возникает в магнитных клетках особой формы, когда количество добавленного азота превышает определенное значение, — рассказал один из авторов исследования. — Такие примеси дают нам несколько худшие свойства плазмы, но если мы установим излучатель точки X в фиксированное положение, изменяя подачу азота, мы сможем проводить эксперименты на более высокой мощности, не повреждая устройство/дивертор». Явление было обнаружено около 10 лет назад на реакторе ASDEX Upgrade, но оно всё ещё требует серьёзного научного обоснования и экспериментов, как и привлекает перспективами. |