реклама
Теги → термоядерный синтез
Быстрый переход

Термоядерный реактор всего за $10 млн удерживал плазму при 300 000 °С в течение 20 с

Новозеландская компания OpenStar была основана Рату Матаирой (Ratu Mataira) в 2021 году в его квартире в Веллингтоне. А теперь стартап сообщил, что смог создать и удерживать плазменное облако температурой около 300 000 °С в течение 20 секунд в своём экспериментальном реакторе. Матаира утверждает, что вместе со своими сотрудниками добился такого результата на пути к полноценному термоядерному синтезу за два года, потратив менее $10 млн.

 Источник изображения: OpenStar

Один из элементов реактора. Источник изображения: OpenStar

Для ядерного синтеза требуются гораздо более высокие температуры, но OpenStar подчёркивает оригинальную масштабируемую конструкцию реактора, пригодную для коммерциализации. Перспектива термоядерного синтеза, при котором изотопы водорода сталкиваются внутри плазмы, высвобождая огромные объёмы энергии, манила исследователей на протяжении десятилетий.

 Источник изображений: ft.com

Источник изображений: ft.com

В последние годы значительное финансирование направлялось на стартапы в области термоядерного синтеза — инвесторы делают ставку на то, что этот процесс может обеспечить дешёвую, экологически чистую энергию. Однако технология всё ещё находится в стадии разработки, и эксперты пока не называют сроков её коммерческого успеха.

Несколько других проектов термоядерного синтеза, включая ITER во Франции, китайский испытательный реактор Fusion Engineering и JT-60SA в Японии, используют конструкцию «токамака», впервые разработанную советскими учёными в 1950-х годах. Устройство формирует облако плазмы внутри камеры в форме пончика, удерживаемое мощными внешними магнитами.

Матаира утверждает, что в своей конструкции реактора ему удалось «вывернуть конструкцию токамака наизнанку». Вместо внешних магнитов он использовал левитирующий высокотемпературный сверхпроводящий магнит, расположенный внутри перегретой плазмы. Плазма удерживается внутри вакуумной камеры в пределах силовых линий магнита с севера на юг.

«Основная инженерная задача заключается в том, как заставить магнит, окружённый плазмой, работать достаточно долго», — сообщил Матаира. Сейчас левитирующий магнит работает от батареи, которая требует подзарядки через 80 минут.

Такая конструкция реактора впервые была разработана учёными Массачусетского технологического института. По мнению Матаиры она лучше масштабируется, чем реакторы токамак, потому что её легче модифицировать. «Строительство токамака похоже на строительство корабля в бутылке, — пояснил Матаира. — Каждое принятое решение по проектированию влияет на все остальные системы».

Деннис Уайт (Dennis Whyte), профессор Массачусетского технологического института и соучредитель американской компании Commonwealth Fusion Systems, занимающейся термоядерным синтезом, заявил, что он «в восторге» от построенного OpenStar реактора. По его мнению, «это добавляет захватывающую возможность к разнообразным подходам к термоядерному синтезу».

Глава OpenStar ожидает, что термоядерный синтез уже через шесть лет может стать коммерческой технологией. «Мы с энтузиазмом относимся к термоядерному синтезу, так как он может способствовать декарбонизации энергетического сектора, а для этого существует огромный дефицит времени», — сказал Матаира.

Стоит отметить, что ещё в 1987 году Новая Зеландия приняла закон о создании безъядерной зоны в своих территориальных морских, сухопутных и воздушных пространствах. В стране нет атомных электростанций. Однако Матаира утверждает, что исследования OpenStar соответствуют законам страны о радиационной безопасности. Он уверен, что общественность осознает различие между ядерным делением и термоядерным синтезом, который не создаёт радиоактивных отходов.

На сегодняшний день стартап финансируется локальными новозеландскими инвесторами, но планирует в первом квартале 2025 года привлечь от $500 млн до $1 млрд.

Холодный термоядерный синтез заработал — экспериментальный реактор стартапа ENG8 вышел в плюс

Удивительная новость пришла из Гибралтара. Местная компания ENG8 создала и показала в работе автономную и компактную установку по получению энергии от реакции холодного термоядерного синтеза. Эксперты с мировым именем подтвердили, что установка EnergiCells выдаёт в три раза больше энергии, чем тратит на холодный ядерный синтез. Установка работает без внешних источников питания и является первым в мире источником термоядерной энергии.

 Коллаж interestingengineering.com. Источник изображения: interestingengineering.com \

Коллаж interestingengineering.com. Источник изображения: interestingengineering.com \ ENG8

Валерия Тютина (Valeria Tyutina), генеральный директор ENG8, сказала: «В то время как горячий термоядерный синтез борется за получение чистой энергии, технология катализируемого термоядерного синтеза значительно продвинулась вперед и предлагает жизнеспособный источник доступной энергии с нулевым уровнем выбросов для развития мировой экономики. Наша технология доступна для массового производства, поэтому каждый житель планеты может иметь доступ к своему собственному независимому источнику энергии».

По всей видимости, речь идёт об электрохимически индуцированном ядерном синтезе, в ходе которого в электролитической ячейке происходит слияние изотопов водорода на электродах в присутствии катализатора. «Энергетические элементы соединяют ядра водорода, производя фотоны или свет, а также непосредственно электроны или электричество. В настоящее время они производят электроэнергию в масштабе от милливатт до десятков киловатт», — как объясняет работу элемента EnergiCells пресс-релиз компании.

Инвестор поручил разобраться с изобретением учёного с мировым именем, Жан-Полю Бибериану (Jean-Paul Biberian), в активе у которого более 80 работ в сфере LENR (low-energy nuclear reactions, низкоэнергетических ядерных реакций). После экспертизы учёный заявил: «Технология способна обеспечить непрерывную работу, производя киловатты выходной энергии, при этом чистая выходная мощность в три раза превышает потребляемую».

По словам Тютиной, у компании есть несколько промышленных заказчиков, которые доверяют этой технологии и проявили интерес к оборудованию EnergiCell мощностью от 3 МВт до 8 ГВт. Ранее представители компании делали доклады на европейских конференциях по энергетике, заверяя коллег, что технология EnergiCell не имеет побочных последствий и не производит вредных выбросов. Эксплуатация энергетических объектов с установками EnergiCell будет не дороже эксплуатации электростанций на ископаемом топливе за исключением того, что топливо не придётся покупать. Установки производят электричество и тепло. Специальная настройка допускает генерацию водорода и кислорода.

На одном из последних семинаров генеральный директор Международного общества ядерных исследований конденсированных сред (ISCMNS) Алан Смит (Alan Smith), сказал: «Если бы мне пришлось делать ставку на то, какие компании LENR первыми выйдут на рынок, ENG8 вошла бы в число двух лучших».

«Наши автономные энергетические ячейки обладают потенциалом для децентрализации производства энергии, обезуглероживания экономики и снижения цен на энергоносители. Это не просто продукт; это кардинальный сдвиг в сторону создания более чистой и устойчивой энергетики и более справедливого мира», — заявили в компании.

Японский токамак JT-60SA установил рекорд по объёму удерживаемой плазмы — 160 кубометров

Крупнейший в мире термоядерный реактор JT-60SA, созданный в рамках совместного проекта Японии и Европы, сумел достичь объёма плазмы в 160 м³. На сегодняшний день это достижение является мировым рекордом, и оно было официально зафиксировано представителями Книги рекордов Гиннесса.

 Источник изображения: interestingengineering.com

Источник изображения: interestingengineering.com

Экспериментальное устройство JT-60SA известно как крупнейший в мире токамак. Она находится в городе Нака в префектуре Ибараки в Японии. Установка была запущена в прошлом году с целью скорейшего начала практического применения энергии термоядерного синтеза.

В ходе одного из экспериментов на JT-60SA, проведённого в начале сентября, учёными был достигнут объём плазмы в 160 м³, что значительно превосходит предыдущий рекорд в 100 м³ плазмы. Об этом сообщили в Японском национальном институте квантовых и радиологических наук. В дальнейшем учёные планируют применить знания, которые были получены при создании JT-60SA, в других термоядерных реакторах, включая европейскую установку ITER.

Для удержания плазмы внутри камеры реактора используется сочетание создаваемого катушками внешних сверхпроводящих магнитов тороидального магнитного поля и радиального полоидального поля, возникающего при прохождении тока в плазме. В установке задействованы сверхпроводящие магниты, охлаждённые до -269 градусов. Это позволяет удерживать внутри камеры плазму, температура которой может достигать 100 млн градусов.

Полученные в ходе экспериментов данные могут способствовать достижению контроля плазмы в больших объёмах, что будет полезно в ходе дальнейшей работы с ещё более крупными реакторами ITER и DEMO. Установка DEMO будет создана на основе JT-60SA и ITER, она будет представлять собой устройство для демонстрации процесса выработки электроэнергии и экономической эффективности термоядерной энергии.

Майонез помог учёным в изучении термоядерного синтеза

Группа учёных из Лихайского университета (Lehigh University) в штате Пенсильвания несколько последних лет использует для моделирования неустойчивости плазмы на границе раздела сред обычный майонез. Его поведение достаточно точно имитирует физику топливных капсул в ходе реакции инерциального управляемого термоядерного синтеза. Новая работа учёных посвящена изучению фаз неустойчивости плазмы на основе наблюдений за поведением майонеза на стенде.

 Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

Как известно, инерциальный управляемый термоядерный синтез опирается на удар лазерами (или током) по топливной капсуле в центре мишени. Около двух лет назад на установке NIF в США впервые получили больше энергии на выходе, чем понадобилось для запуска термоядерной реакции. Тем не менее, реакция бомбардировки капсулы с топливом дейтерий-тритий не всегда проходит гладко. Она может взорваться не успев дать плазме прореагировать. Часть топлива успевает превратиться в газ (плазму), а часть остаётся в жидком состоянии. Майонез позволяет воссоздавать похожие процессы, которые поддаются упрощённому и безопасному анализу без постановки дорогостоящих экспериментов.

«Мы всё еще работаем над той же проблемой, которая заключается в [изучении] структурной целостности термоядерных капсул, используемых в термоядерном синтезе с инерционным удержанием, и настоящий майонез Hellmann's по-прежнему помогает нам в поиске решений», — сказал Ариндам Банерджи (Arindam Banerjee), профессор машиностроения и механики в Лихайском университете и заведующий кафедрой термоядерного синтеза.

«Мы используем майонез, потому что он ведет себя как твердый продукт, но при воздействии перепада давления он начинает течь, — поясняют авторы работы. — Использование соуса также устраняет необходимость в высоких температурах и давлении, которые чрезвычайно трудно контролировать».

Для своих экспериментов с майонезом исследователи создали специально изготовленное и единственное в своём роде вращающееся колесо, чтобы имитировать условия течения плазмы. Как только ускорение превышало критическое значение, майонез начинал течь. В частности, учёные выяснили, что майонез ещё до начала неустойчивости проходил через несколько фазовых состояний. По мере приложения усилия к нему он становился податливым и затем переходил в стабильную пластичную фазу. На следующем этапе воздействия майонез начинал течь, и именно тогда возникала неустойчивость.

По словам учёных, понимание перехода между упругой фазой и стабильной пластичной фазой имеет решающее значение, поскольку знание того, когда начинаются пластические деформации, может подсказать исследователям, когда наступит нестабильность. В новой работе учёные пытались контролировать состояние майонеза, чтобы он оставался в пределах этой эластичной или стабильно пластичной фазы. Иначе говоря, чтобы «плазма» оставалась в устойчивом состоянии и не грозила бы неконтролируемым взрывом топливной капсулы.

Работа помогла измерить условия для восстановления устойчивого состояния плазмы, что стало первой работой в мире на эту тему. Другой вопрос, как соотнести полученные на майонезе результаты с настоящей плазмой в термоядерном реакторе? На него у учёных пока нет однозначного ответа. Но они над этим работают.

Учёные из США на порядок повысили плотность плазмы в термоядерном реакторе, но до конца не поняли как

Физики Висконсинского университета в Мэдисоне сообщили о знаковом достижении — они сумели на порядок увеличить плотность плазмы в термоядерном реакторе типа токамак. Ранее это считалось невозможным, поскольку существует предел для этой величины. По крайней мере, немыслимо было мечтать о 10-кратном превышении порога, что также ведёт к увеличению выхода энергии рукотворной термоядерной реакции.

 Madison Symmetric Torus. Источник изображения:

Madison Symmetric Torus. Источник изображения: University of Wisconsin-Madison

Справедливости ради отметим, что учёные из Висконсина провели работу на университетском реакторе Madison Symmetric Torus (MST). Эта установка отличается от классического токамака управлением и рядом особенностей конструкции и, наверное, ближе к стеллараторам, чем к токамакам. Точное название этого типа токамака — пинч с обращённым полем (Reversed Field Pinch). Установка RFP изначально обеспечивает повышенную по сравнению с классическими токамаками плотность плазмы, но сути открытия это не меняет. Учёные смогли в 10 раз повысить плотность плазмы внутри рабочей камеры и могут помочь распространить свой метод на другие типы токамаков.

Предел плотности плазмы в рабочей камере токамака называют пределом Гринвальда. Эта величина получена опытным путём и не до конца обоснована теорией. Учёные из Висконсина считают ключом к своему успеху два момента: особенность конструкции токамака MST (прежде всего, более толстые стенки рабочей камеры, что стабилизирует магнитные поля в рабочей зоне), а также особенный источник питания, который допускает регулировку на основе обратной связи (опять же, решающее значение для стабильности).

«Максимальная плотность, по-видимому, устанавливается аппаратными ограничениями, а не нестабильностью плазмы», — пишут исследователи. Две ключевые характеристики токамака MST, похоже, сыграли в этом открытии решающую роль, которую ещё предстоит изучить и объяснить.

«Остаются вопросы о том, почему, в частности, MST способен работать с превышением порога Гринвальда и до какой степени эта способность может быть расширена до более высокопроизводительных устройств», — делятся учёные в статье в журнале Physical Review Letters. Ответы на эти вопросы, надо полагать, способны приблизить тот светлый миг, когда на Земле зажжётся «искусственное Солнце». И хорошо, если учёные будут понимать, почему и как это происходит без догадок и белых пятен в теории и на практике.

Корейский термоядерный реактор на рекордные 48 секунд зажёг плазму, которая в семь раз горячее ядра Солнца

Южнокорейский институт термоядерной энергетики (KFE) сообщил о достижении нового рекорда по времени удержания плазмы реактором KSTAR. К декабрю 2023 года реактор подвергся частичной модернизации, что позволило поднять планку его возможностей. Первые три месяца его работы в новой конфигурации позволили превзойти предыдущий рекорд удержания плазмы с температурой 100 млн °C и приблизиться к новому целевому показателю.

 Источник изображения: Korea Institute of Fusion Energy (KFE)

Источник изображения: Korea Institute of Fusion Energy (KFE)

В ходе предыдущей серии экспериментов термоядерный реактор KSTAR смог удерживать ионную плазму с температурой 100 млн °C в течение 30 секунд. Это в семь раз жарче, чем в ядре нашего Солнца. В звёздах термоядерную реакцию синтеза в основном запускает не температура, а высочайшая гравитация (и квантовая неопределённость). На Земле мы не может создать подобного гравитационного сжатия в реакторах, поэтому приходится компенсировать эту нехватку запредельными температурами.

Важно подчеркнуть, что корейцы практически всегда говорят о нагреве ионной плазмы — о нагреве атомов водорода или его изотопов, тогда как китайские учёные сообщают о достижении рекордного времени удержания обычно электронной плазмы, которая в рабочей зоне может быть в два раза горячее ионной. Для термоядерной реакции ключевым является нагрев атомов, а не электронов. Поэтому «корейские 100 млн» — это правильные 100 млн, которые, в итоге, определят работоспособность будущих коммерческих реакторов.

По плану в этом году модернизированный реактор KSTAR должен удержать стабильную ионную плазму с температурой 100 млн °C в течение 50 секунд. В ходе первого пробного запуска плазма оставалась стабильной 48 с. Также учёные смогли 100 секунд удерживать плазму в «высокоплотном режиме», что также поможет выйти со временем на коммерческие параметры. Повысить длительность удержания плазмы на максимальной температуре помогла модернизация реактора.

В частности, углеродные плитки температурной защиты дивертов на дне рабочей камеры были заменены на вольфрамовые. Сообщается, что благодаря этому плитки диверторов нагрелись всего до 25 % от прежнего уровня, что позволит ещё дольше удерживать непрерывный цикл плазмы. Так что впереди новые рекорды и планы зажечь плазму на 300 секунд в 2026 году.

В США создали импульсный двигатель на водяном топливе с термоядерным форсажем

Компания RocketStar сообщила, что создала и протестировала инновационную электрическую двигательную установку FireStar Drive для космических аппаратов, которая использует усиленные термоядерным синтезом импульсы плазмы. Предложенное решение значительно повышает производительность базовой импульсной установки RocketStar на водяном топливе. Прототип двигателя создан, испытан на земле и готовится к испытаниям в космосе.

 Источник изображения: RocketStar

FireStar Drive M1.5. Источник изображения: RocketStar

Созданный ранее в компании базовый двигатель генерирует высокоскоростные протоны за счет ионизации водяного пара. Когда эти протоны (полученные от водорода) сталкиваются с ядром атома бора, возникает реакция синтеза, в ходе которой атом бора превращается в высокоэнергетическую форму углерода, которая быстро распадается на три альфа-частицы. Это так называемая безнейтронная реакция синтеза, которая не создаёт сильного радиационного излучения и поэтому установку намного проще экранировать.

Бор вводится в реактивную струю газов — выбросов из работающего плазменного двигателя FireStar Drive — и в процессе реакции синтеза как бы переводит двигатель в режим форсажа или, проще говоря, значительно увеличивает тягу базового импульсного плазменного двигателя.

Компания RocketStar работает по ряду программ МО США (SBIR, AFWERX и других). Во время первого этапа работ в зону выхлопа экспериментального импульсного плазменного двигателя была введена борированная вода. Это привело к образованию альфа-частиц и гамма-лучей — явных признаков реакции ядерного синтеза. Позже совместно со специалистами лаборатории High Power Electric Propulsion Laboratory (HPEPL) в Атланте было показано, что двигатель не только создавал ионизирующее излучение, но также увеличивал тягу базовой двигательной установки на 50 %.

Созданный в компании двигатель FireStar доступен для отправки заказчикам. Он называется M1.5 и будет продемонстрирован в космосе в качестве полезной нагрузки на спутнике-носителе OTV ION компании D-Orbit, который будет отправлен в космос в ходе очередных «пакетных» миссий SpaceX Transporter в июле и октябре этого года.

«Мы очень рады возможности работать бок о бок с RocketStar и внести свой вклад в демонстрацию M1.5, — сказал Маттео Лоренцони, руководитель отдела продаж D-Orbit. — Мы только что интегрировали двигатель на спутник-носитель ION и с нетерпением ждём возможности увидеть его работу на орбите».

Планы по испытанию двигателя FireStar включают дальнейшие наземные проверки в этом году, а также ещё одну демонстрацию в космосе, запланированную на февраль 2025 года в качестве полезной нагрузки на космическом аппарате Rogue Space System Barry-2.

Технология запуска термоядерной реакции с помощью кварцевого снаряда прошла испытания на запредельном давлении

Британская компания First Light Fusion стала первым коммерческим клиентом, получившим допуск для экспериментов на установке Z Machine в Сандийских национальных лабораториях (SNL). Компания First Light Fusion разработала уникальный «ускоритель» давления для запуска термоядерных реакций и эксперименты на американской установке позволили испытать платформу на недостижимых ранее уровнях давления.

 Источник изображения: Sandia

Источник изображения: Sandia

Принцип запуска термоядерной реакции на платформе First Light Fusion базируется на создании таких условий вокруг топливной мишени, при которых более лёгкие атомы преодолевают кулоновское отталкивание и сливаются с образованием более тяжёлых, отчего выделяется много энергии. В токамаках, например, для этого создаётся температура свыше 100 млн °C. Но можно пойти другим путём, и в частности обойтись без магнитного удержания. Для этого придумано инерционное удержание, когда вокруг топлива создаётся запредельное давление, к примеру, тем или иным ударным воздействием.

Установка Z Machine (Z-Pinch) в Сандийских лабораториях считается самой мощной импульсной электрической установкой такого типа в мире. В Европе тоже есть подобное устройство — Machine 3, но оно значительно слабее по характеристикам. Британцам нужно было выйти на более высокий уровень, чтобы подтвердить характеристики фирменного «ускорителя» давления. При пиковой мощности в 80 трлн ватт американская установка с помощью электромагнита запускает снаряды с более высокими скоростями, чем любая другая установка в мире.

Компания First Light Fusion получила или купила право на три выстрела. Всего Z Machine в Сандийских лабораториях делает около 200 выстрелов в год. Успешный первый эксперимент First Light установил новый рекорд давления для кварца на сандийской установке, повысив его с 1,5 терапаскаля (ТПа) до 1,85 ТПа, сохранив при этом образцы и обеспечив условия для проведения необходимых измерений. Испытания подтвердили верность используемых теоретических моделей и конструкции прототипа системы поджига.

Интересно, что около года назад компания First Light Fusion подписала с Управлением по атомной энергии Великобритании (UKAEA) соглашение о проектировании и строительстве объекта для размещения нового демонстратора Machine 4. Начало строительства было намечено на 2024 год на территории кампуса Кулхэм в Оксфордшире. Начало эксплуатации установки ожидается в 2027 году. Вряд ли получение допуска к экспериментам на Z Machine в США отменило предыдущий проект. Обуздание термоядерной энергии — это дело муторное и долгое. К этому принято двигаться, выверяя каждый свой шаг.

Добавим, установка Machine 4 компании First Light Fusion будет передавать топливной мишени энергию за счёт удара разогнанного до скорости 60 км/с кварцевого снаряда. При попадании в мишень уникальный «ускоритель скорости» компании разгонит продукты удара до 200 км/с и сфокусирует их на топливной мишени в виде обжимающих мишень сферических волн. Комбинация кинетического и лазерного удара обещает значительно снизить энергопотребление термоядерной установки. Впрочем, Machine 4 тоже станет проверкой концепции, от которой до настоящей термоядерной установки будет очень и очень далеко.

В MIT открыли путь к дешёвой термоядерной энергии, совершив прорыв в производстве сверхпроводящих магнитов

В серии из шести научных статей в мартовском выпуске журнала IEEE Xplore учёные Массачусетского технологического института рассказали о разработке и принципах работы новых электромагнитов на основе высокотемпературной сверхпроводимости. Эта разработка названа крупнейшим за последние 30 лет прорывом в области создания коммерчески выгодных термоядерных реакторов.

 Источник изображений: MIT

Источник изображений: MIT

Первые испытания масштабного прототипа высокотемпературного сверхпроводящего электромагнита состоялись 5 сентября 2021 года в лабораториях Центра науки о плазме и термоядерного синтеза Массачусетского технологического института (PSFC). Изделие массой около 9 тонн создало электромагнитное поле силой 20 тесла. Конструкция электромагнита была создана с нуля с использованием новых принципов и масштабные испытания должны были подтвердить правильность расчётов, моделей и самой идеи, которая на тот момент была крайне новаторской.

До появления этой разработки существующие на тот момент технологии и электромагниты уже могли создавать поля необходимой напряжённости, чтобы удерживать нагретую до 100 млн °C плазму в изоляции от стенок рабочей камеры. Однако эффективность работы подобных систем была далека от требований рентабельности. Учёные из MIT с коллегами из компании Commonwealth Fusion Systems смогли создать намного более компактные и дешёвые в производстве и поддержке электромагниты, которые позволили заявить об их впечатляющей энергоэффективности.

«За одну ночь это практически изменило стоимость ватта термоядерного реактора почти в 40 раз», как позже заявили участники эксперимента. «Теперь у термоядерного синтеза есть шанс, — утверждают учёные. — Наиболее широко используемая конструкция для экспериментальных термоядерных устройств, получила шанс стать экономичной, потому что у вас появились скачкообразные изменения в этой области». Это способность значительно уменьшить размер и стоимость объектов, которые сделали бы возможным термоядерный синтез.

Один из секретов успеха новой конструкции электромагнитов стал отказ от изоляции проводов в обмотках катушек. В это трудно поверить, но учёные использовали в обмотке голые провода без опасений пробоев и коротких замыканий. Эффект сверхпроводимости создал в обмотках такие условия, что замыканием между витками можно было пренебречь. Эксперимент подтвердил правильность выбора. Катушка электромагнита осталась надёжной и стала гораздо меньше в размерах, а также по стоимости и с точки зрения общего размера реактора.

В качестве обмотки был выбран высокотемпературный сверхпроводник REBCO — это редкоземельный оксид бария-меди, который позволяет достигать сверхпроводящего эффекта при температуре 20 К — это на 16 К выше обычной сверхпроводимости, что меняет правила игры несмотря на кажущуюся небольшую разницу в глубине охлаждения. На один электромагнит ушло 300 км полосы REBCO. Только представьте, сколько экономии пространства в катушке стало возможным благодаря отказу от изоляции этого провода. Кстати, в MIT не назвали поставщика этого провода, поэтому им вполне может оказаться китайский производитель Shanghai Superconductor, например.

Позже во время испытаний магнита на критических режимах были проверены теоретические модели его поведения вплоть до частичного разрушения (расплавления обмотки). Это было важно для улучшения конструкции и отработки эксплуатационных характеристик электромагнитов для использования в будущих термоядерных реакторах. Выход сегодня статей по разработке стал возможным после получения патентов на конструкцию электромагнитов и принципы их работы. Исследование приближает тот момент, когда на Земле может зажечься рукотворное Солнце, а энергия в электросетях станет бесконечной и практически чистой.

Термоядерный реактор JET установил мировой рекорд выработки энергии, но больше не запустится никогда

Европейский термоядерный реактор Joint European Torus (JET) в британском Оксфорде установил новый мировой рекорд по объёму выработанной энергии в одном цикле реакции синтеза. Установка работала рекордные 6 секунд и произвела за это время 69,26 мегаджоулей тепловой энергии. Новый эксперимент стал очередным доказательством того, что проект ИТЭР будет успешным, поскольку токамак JET — это его уменьшенная копия.

 Внутри рабочей камеры термоядерного реактора. Источник изображения: Christopher Roux (CEA-IRFM)/EUROfusion

Внутри рабочей камеры термоядерного реактора. Источник изображения: Christopher Roux (CEA-IRFM)/EUROfusion

Установка JET была построена совместным усилием нескольких европейских стран 40 лет назад. В собственность британской UKAEA она перешла в октябре 2021 года, поскольку Великобритания вышла из ЕС. Около двух месяцев назад JET прекратил работу и будет демонтирован. За всё время термоядерный реактор создал свыше 100 тыс. импульсов с запуском термоядерной реакции синтеза.

Как и в будущем термоядерном реакторе проекта ИТЭР, и в будущей первой термоядерной европейской электростанции DEMO, в реакторе JET используется дейтерий-тритиевое топливо в соотношении 50/50. Это означает, что все реакции в JET и методы контроля над плазмой и формой её жгута в «пончике» рабочей камеры будут проходить одинаково с учётом, конечно, разных масштабов. На опыте JET учёные научились создавать ровную кромку плазмы без срывов на стенки сосуда, что даст возможность реактору ИТЭР работать максимально устойчиво с самой первой плазмы.

Реактор JET исчерпал свои возможности. Плазму в его рабочей камере удерживают обычные электромагниты с обмоткой из медной проволоки (в составе ИТЭР будут сверхпроводящие магниты). Он просто не сможет работать с большими энергиями. В своём прощальном эксперименте он за 6 секунд сжёг 0,21 мг дейтерий-тритиевого топлива, разогрев плазму до 150 млн °C и выработав рекордный объём энергии за один сеанс. Кстати, в 20 раз больше, чем на американской установке NIF в Ливерморской национальной лаборатории им. Лоуренса, о чём европейские учёные упомянули в пресс-релизе.

Но надо сказать, эксперимент в JET не дошёл до самоподдерживающейся термоядерной реакции. Затраченной энергии было намного больше, чем получено в ходе реакции синтеза. В этом плане американцы оказались впереди планеты всей, хотя тоже с массой оговорок. В целом, наука об управляемом термоядерном синтезе в земных условиях медленно, но верно движется к своей цели — зажечь на Земле рукотворное солнце и получить бесконечный источник чистой энергии.

Китай намерен построить первый прототип термоядерной электростанции к 2035 году

В последние дни уходящего года в Китае были созданы две сверхструктуры для ускорения движения к практическому использованию энергии термоядерного синтеза. Речь идёт не столько о науке, как о коммерческих решениях ближайшего будущего. Если графики работ будут соблюдены, к 2035 году в Китае начнёт работать прототип промышленного термоядерного реактора, а к 2050 году термоядерные электростанции будут строиться по всей стране.

 Источник изображения: China National Nuclear Corporation

Источник изображения: China National Nuclear Corporation

В Китае 29 декабря 2023 года состоялась церемония учреждения государственной компании China Fusion Energy Inc. Она объединит исследования и разработки в области термоядерной энергетики в Китае, которые ранее были распределены между исследовательскими институтами и частными фирмами. Одновременно с этой структурой был создан консорциум из 25 организаций во главе с Китайской национальной ядерной корпорацией (CNNC). Консорциум будет решать ряд фундаментальных проблем, мешающих практическому освоению энергии термоядерного синтеза.

Создание столь мощных организаций и передача в их руки всех ранее разрозненных ресурсов даёт понять, что центральные власти Китая считают переход к термоядерной энергетике ключевым в промышленности и экономике. Для решения финансовых вопросов также был создан соответствующий фонд. Участниками консорциума стали не только профильные научные организации, но также такие государственные компании, как China Aerospace Science and Industry Corporation и State Grid Corporation of China. Для понимания масштаба усилий — это примерно как если бы под эгидой «Росатома» термоядерной проблематикой также начали бы заниматься РАО ЕЭС и «Ростех».

Согласно опубликованной CNNC информации о встрече, 13 членам новоиспечённого консорциума было поручено решить первый набор из 10 задач, которые касаются таких вопросов, как высокотемпературные сверхпроводящие магниты, материалы для термоядерных реакторов и высокопроизводительные накопители энергии. В первом приближении, если говорить о планах новых структур, Китай намерен построить промышленный прототип термоядерного реактора к 2035 году и внедрить технологию для крупномасштабного коммерческого использования к 2050 году.

Основной научный и экспериментальный задел предоставят две научные организации Китая: Юго-Западный институт физики (SWIP), расположенный в городе Чэнду на юго-западе Китая, и Институт физики плазмы (IPP) при Академии наук Китая в провинции Аньхой.

Китай позже всех включился в гонку за термоядерной энергией, но он быстро навёрстывает упущенное. Так, с 2011 по 2022 год именно Китай подал больше патентов в области термоядерного синтеза, чем любая другая страна.

Летом 2023 года термоядерный реактор HL-2A впервые сгенерировал плазму с током силой более 1 млн ампер в режиме улучшенного удержания, а экспериментальный усовершенствованный сверхпроводящий токамак (EAST), разработанный Институтом физики плазмы в Хэфэе (провинция Аньхой) стал первым в мире полностью сверхпроводящим токамаком. В конце 2021 года он стал первым в своем роде, способном работать с длительностью импульса 1056 секунд. Есть и другие достижения, которые позволяют китайским учёным надеяться первыми в мире освоить практический термоядерный синтез — зажечь на Земле «искусственное Солнце».

Найдено простое решение для создания компактных термоядерных реакторов

Группа учёных из Висконсинского университета в Мадисоне нашла возможность уменьшить размеры рабочих зон термоядерных реакторов. Исследователи испытали особое напыление для внутренних стенок камер реактора, которое не только лучше отводило тепло, но также связывало нейтральные атомы водорода в плазме — источник снижения мощности плазменного шнура и путь к преждевременному прекращению реакции.

 Источник изображения: University of Wisconsin-Madison/Николая Яловега (в центре снимка)

Источник изображения: University of Wisconsin-Madison/Николай Яловега (в центре снимка)

«Эти нейтральные частицы водорода вызывают потери мощности в плазме, что делает очень сложной задачу поддержания горячей плазмы и создания эффективного небольшого термоядерного реактора», — поясняет руководитель группы Николай Яловега, научный сотрудник в области ядерной инженерии и инженерной физики Висконсинского университета в Мадисоне (UW–Madison).

Для решения указанной проблемы команда Яловеги в качестве тугоплавкого покрытия внутренних стенок реакторной зоны испытала холодное напыление танталом. Частицы этого тугоплавкого металла распылялись и расплющивались до состояния блинов на поверхности нержавеющей стали. Такое нанесение не создавало сплошной слой металла, а оставляло границы по контуру каждой капли. Именно эти пограничные участки, как оказалось, очень легко связывали нейтральный водород, если его атомы вылетали из плазменного шнура.

Более того, выработавшую свой ресурс поверхность стенки с танталовым напылением не нужно было затем выбрасывать или перерабатывать, а вместо неё устанавливать новое изделие. Простой нагрев восстанавливаемого участка до сверхвысоких температур высвобождал захваченный водород, и элемент конструкции камеры снова был готов для работы в реакторе. Такое решение, очевидно, заметно облегчит и удешевит ремонт термоядерных реакторов. Наконец, технологически простое напыление позволит на месте ремонтировать внутренние стенки реакторной зоны.

«Создание композита из тугоплавкого металла с такими характеристиками, как хорошо контролируемое обращение с водородом в сочетании с эрозионной стойкостью и общей упругостью материала, является прорывом в разработке плазменных устройств и систем термоядерной энергетики», — сказал второй автор работы Оливер Шмитц. — Особенно интересна перспектива замены сплава и включения других тугоплавких металлов для улучшения композитных материалов для ядерного применения».

Свою разработку исследователи испытали на университетской установке WHAM (Wisconsin HTS Axisymmetric Mirror). Установка является также испытательным полигоном для проектирования термоядерной электростанции, чем на проекте занимается компания Realta Fusion, созданная выходцами из университета.

NTT адаптировала ИИ-инструмент анализа сетей для поиска неисправностей в термоядерных реакторах

Японская компания NTT переработала основанный на алгоритмах искусственного интеллекта инструмент, который первоначально использовался для мониторинга телекоммуникационных сетей, и адаптировала его для прогнозирования аномалий в термоядерных реакторах.

 Источник изображения: Lukas / pixabay.com

Источник изображения: Lukas / pixabay.com

NTT ведёт работу совместно со специалистами проекта ИТЭР — стороны сотрудничают с мая 2020 года. Японские специалисты считают, что систему искусственного интеллекта DeAnoS (Deep Anomaly Surveillance) можно будет использовать для мониторинга термоядерной установки ИТЭР — она будет предотвращать отказы в работе оборудования и способствовать «гладкой экспериментальной работе».

Бесперебойная работа имеет жизненно важное значение для термоядерных реакторов, поскольку они должны функционировать при температурах в сотни миллионов градусов Цельсия. Сбой может повредить оборудование или вызвать другие проблемы, способные привести к простоям на несколько дней или недель. DeANoS помогает обнаруживать неисправности реактора и оценивает аномалии, после чего проводит анализ их влияния на работу, основываясь на долгосрочных данных.

В совместном проекте NTT будет обеспечивать работоспособность и достоверность сигналов DeANoS, а специалисты ИТЭР станут предоставлять эксплуатационные данные и обеспечивать среду для тестирования. Если испытания пройдут удачно, сфера применения системы расширится.

В установках термоядерного синтеза имитируются процессы, которые питают Солнце — для них необходима плазма при чрезвычайно высоких температурах, которая удерживается в мощном магнитном поле. Эта технология позволит производить чистую энергию без рисков, характерных для другой технологии — ядерного деления. Запуск главного термоядерного реактора ИТЭР запланирован на 2025 год.

Крупнейший в мире термоядерный реактор запущен в Японии

Крупнейший в мире термоядерный реактор получил первую плазму. Это установка JT-60SA, которая создавалась для помощи в отработке термоядерных технологий международному проекту ITER. Высота рабочей камеры JT-60SA всего вполовину меньше высоты камеры реактора ITER, что делает эксперименты на японском реакторе достаточно ценными для приближения успеха международного проекта.

 Источник изображения: Japan’s National Institutes for Quantum Science and Technology

Источник изображения: Japan’s National Institutes for Quantum Science and Technology

Термоядерный реактор JT-60SA был заново построен на месте старого реактора JT-60. Он стал больше, а магниты были заменены на сверхпроводящие. Это позволит ему удерживать плазму в самом большом на сегодня в мире объёме рабочей зоны в 135 м3. В реакторе ИТЭР, отметим, объём рабочей камеры составит 840 м3.

Обслуживающие реактор JT-60SA специалисты пока не сообщили о параметрах полученной в реакторе плазмы. В идеальном случае её температура (очевидно, речь об электронной плазме) должна дойти до 200 млн °C. В таком случае для запуска термоядерной реакции температура ионной плазмы должна достичь 100 млн °C. В таком состоянии реактор JT-60SA должен будет поддерживать работу в течение 100 секунд.

Получение первой плазмы на реакторе JT-60SA как на уменьшенной копии реактора ITER свидетельствует о правильном выборе конструкции и стратегии международного проекта. Реактор JT-60SA уже помог специалистам ITER, хотя далось это немалой кровью. В 2021 году во время пробного запуска JT-60SA в катушке одного из сверхпроводящих магнитов возникло короткое замыкание, что почти на три года отсрочило начало работы установки. Длительный и дорогой ремонт JT-60SA заставил инженеров ITER с повышенным вниманием отнестись к магнитам своего реактора помимо решения текущих проблем.

Эксперименты на JT-60SA позволят лучше подготовиться к запуску реактора во Франции. На последующих этапах пути этих реакторов разойдутся. Японский реактор может работать только на дейтериевом топливе, тогда как реактор ИТЭР со временем сможет перейти на более эффективное дейтерий-тритиевое топливо. Тем не менее, эксперименты на JT-60SA позволят японцам разработать собственную термоядерную электростанцию — проект DEMO, которую они намерены построить к 2050 году. А пока тон в отрасли задают китайцы, опытные термоядерные реакторы которых разогревают плазму до температур свыше 100 млн °C на сотни секунд.

Курчатовский институт испытал модернизированный токамак Т-15МД с новыми системами повышения мощности

На пленарном заседании форума «Технопром» вице-президент НИЦ «Курчатовский институт» Александр Благов сообщил о проведении энергетических испытаний модернизированного токамака Т-15МД. Это первая построенная за 20 лет установка такого рода в России. Первая плазма на токамаке получена весной этого года, после чего началось постепенное увеличение мощности установки.

 Модернизированная термоядерная установка токамак Т-15МД. Источник изображения: Юлия Бубнова/ТАСС

Модернизированная термоядерная установка токамак Т-15МД. Источник изображения: Юлия Бубнова/ТАСС

В чистом виде токамак Т-15МД не может считаться термоядерным реактором. По крайней мере, от него не будут требовать производства энергии. Установка проектировалась и создавалась как мощный термоядерный источник нейтронов. При этом Т-15МД обладает уникальным сочетанием компактности и мощности, что позволит отрабатывать на установке технологии, которые потом найдут применение в масштабных термоядерных проектах. В частности, Т-15МД входит в структуру международного термоядерного проекта ИТЭР (International Thermonuclear Experimental Reactor) и поможет запустить одноимённый реактор в работу, проверяя те или иные аспекты поведения установки и испытывая новое оборудование и материалы.

Физический пуск токамака Т-15МД состоялся в мае 2021 года при участии премьер-министра РФ Михаила Мишустина. Первая плазма на нём, как сообщалось выше, получена весной этого года.

«Сейчас мы его (токамак) дооснастили дополнительными системами нагрева и уже провели первые испытания по энергетическому пуску этой установки. Это очень важное событие с точки зрения развития термоядерный энергетики в нашей стране», — сказал Благов, которого цитирует ТАСС.

Работы по дооснащению токамака продолжаются. В конечном итоге он будет выведен на уровень, необходимый для получения результатов высокого международного значения. Работы по проекту ведёт Курчатовский институт. Конкретно реакторные технологии будут разрабатываться на другой установке — на токамаке с реакторными технологиями, который начали строить на базе Троицкого института инновационных термоядерных исследований. Он должен быть готов к 2030 году.

window-new
Soft
Hard
Тренды 🔥
YouTube добавил в Shorts функцию Dream Screen — ИИ-генератор фонов для роликов 60 мин.
ПК с ИИ снижают производительность труда пользователей — люди не умеют правильно общаться с ИИ 2 ч.
Разработчики Path of Exile 2 раскрыли, чего ждать от раннего доступа — геймплей, подробности и предзаказ в российском Steam 3 ч.
Приключение Hela про храброго мышонка в открытом мире получит кооператив на четверых — геймплейный трейлер новой игры от экс-разработчиков Unravel 5 ч.
OpenAI случайно удалила потенциальные улики по иску об авторских правах 5 ч.
Скрытые возможности Microsoft Bing Wallpaper напугали пользователей 6 ч.
В WhatsApp появилась расшифровка голосовых сообщений — она бесплатна и поддерживает русский язык 7 ч.
Новая игра создателей The Invincible отправит в сердце ада выживать и спасать жизни — первый трейлер и подробности Dante’s Ring 8 ч.
Центр ФСБ по компьютерным инцидентам разорвал договор с Positive Technologies 9 ч.
Android упростит смену смартфона — авторизовываться в приложениях вручную больше не придётся 9 ч.
Россия и США активно обсуждают, как будут топить МКС 11 мин.
Magssory Fold 3 в 1 — компактная и функциональная беспроводная зарядная станция для Apple, Samsung и не только 3 ч.
Nokia подписала пятилетнее соглашение о поддержке ЦОД Microsoft Azure с миграцией с 100GbE на 400GbE 3 ч.
Давно упавший на Землю кусочек Марса пролил свет на историю воды на Красной планете 3 ч.
TeamGroup представила SSD T-Force GA Pro на чипе InnoGrit — PCIe 5.0, до 2 Тбайт и до 10 000 Мбайт/с 4 ч.
Провалился крупнейший проект по производству электромобильных батарей в Европе — Northvolt объявила о банкротстве 4 ч.
«Уэбб» открыл в ранней Вселенной три огромные галактики — учёные не понимают, почему они так быстро сформировались 4 ч.
В Зеленограде начнут выпускать чипы для SIM-карт и паспортов — на этом планируется заработать триллионы рублей 4 ч.
Смартфоны Poco X6 Pro 5G, M6 Pro и C75 предлагают современный дизайн и продвинутые характеристики 5 ч.
В России стартовали продажи полностью беспроводных наушников Tecno True 1 Air, Buds 4 и Buds 4 Air 5 ч.