реклама
Теги → энергетика
Быстрый переход

Санкции против Китая ударили по расширению солнечной энергетики в США в этом году — спад на 23 %

Согласно данным аналитиков, в 2022 году в США было установлено солнечных панелей на 23 % меньше, чем годом ранее. Специалисты винят в этом санкции против Китая, которые взвинтили цены на компоненты солнечных установок из Поднебесной.

 Источник изображения: Nikkei

Источник изображения: Nikkei

«Экономике чистой энергии Америки препятствуют её собственные торговые действия, — говорится в заявлении Эбигейл Хоппер, исполнительного директора SEIA. — Индустрия солнечной энергетики и систем хранения решительно стремится выстроить этичную цепочку поставок, но узкие места в поставках и торговые ограничения не позволяют производителям приобретать оборудование, необходимое для инвестирования в американские объекты».

Проблема в том, что лидером по производству поликристаллического кремния и изготовленных из него солнечных панелей и других компонентов в Китае является печально известный Синьцзян-Уйгурский автономный район. По мнению США, там используется принудительный труд, что следует пресекать. На поликремний из этого района США ввели до 200 % таможенных пошлин, а также установили ряд других ограничений для ввоза комплектующих для солнечных электростанций из Китая.

Производители из Юго-Восточной Азии нашли лазейку. Множество компаний из Таиланда, Вьетнама, Малайзии, Камбоджи и других стран стали закупать санкционную китайскую продукцию и продавать в США как собственную. В отношении подобных схем Министерство торговли США начало собственное расследование. Но ситуация стала настолько плохо влиять на темпы развёртывания солнечных установок в США, что президенту страны Джозефу Байдену пришлось вмешаться в ситуацию и выдать распоряжение как минимум два года не вводить таможенные пошлины на «солнечную» продукцию компаний из Юго-Восточной Азии.

Тем не менее, по множеству причин стоимость комплектующих заметно повысилась. Как отметили в отчёте специалисты SEIA (Ассоциации производителей солнечной энергии), установка новых солнечных мощностей коммунальными предприятиями снизилась в 2022 году на 40 % (до 10,3 ГВт). Установка панелей на частных домах выросла за это время на 37 % (до 5,8 ГВт), но по понятным причинам не могла компенсировать динамику спада на стороне крупных проектов. Как результат, за год новых солнечных установок в США было установлено на 23 % меньше — всего 18,6 ГВт.

«Мы не можем позволить себе тратить время на изменение торговых законов, поскольку надвигается климатическая угроза», — сказала Хоппер. Тем не менее, без принятия новых законов или поправок дело вряд ли сдвинется с мёртвой точки.

Подписанный в августе президентом США Закон о снижении инфляции установил ряд льгот для запуска производства солнечных панелей в США, и часть производителей уже выразила желание запустить новые заводы.

Атомная энергия в энергобалансе Южной Кореи заняла больше 30 % и идёт на рекорд

По свежей информации Южнокорейской энергетической биржи, объём торговли ядерной энергией по состоянию на ноябрь составил 152 958 ГВт·ч — это 30,7 % от общего объёма энергобаланса страны в 498 757 ГВт•ч. Неожиданно резкое похолодание в декабре означает, что спрос на электричество вырастет и наверняка поможет южнокорейским атомщикам побить предыдущий рекорд по выработке, установленный в 2015 году.

 Источник изображения: Business Korea

Источник изображения: Business Korea

Семь лет назад атомные электростанции в Южной Корее внесли в энергобаланс страны долю на уровне 31,7 % (157 167 ГВт•ч). Затем последовал значительный спад, поскольку предыдущая администрация президента Мун Чжэ Ина проводила политику отказа от атомной энергетики. В 2018 году был зафиксирован 17-летний минимум в выработке электричества южнокорейскими АЭС — 23,7 %. Все эти годы вплоть до 2022 уровень вклада АЭС в энергобаланс страны был ниже 30 %.

В этом году глобальный энергетический кризис заставил изменить мнение о степени вредности атомной энергетики, и власти Южной Кореи решили расширить вклад АЭС в выработку электроэнергии к 2030 году до 32,8 % вместо предыдущих планов по её сокращению до 23,9 %. Этому будет способствовать множество факторов, например, увеличение государственных гарантий в поддержку атомщиков (на следующий год намечено удвоение этих сумм до $1,5 млрд), а также ослабление правил по пересмотру сроков и условий продления эксплуатации АЭС.

Также власти Южной Кореи рассчитывают на экспорт отечественных реакторов в другие страны. В частности, действующий президент республики ожидает до конца своих полномочий (до 2027 года) продать не менее 10 новейших реакторов APR1400. К примеру, в настоящий момент власти и бизнес Южной Кореи работают над проектами постройки APR1400 в Польше и Чешской Республике.

В Китае запущена крупнейшая в своём роде мегабатарея на LFP-аккумуляторах — её ёмкость 400 МВт·ч

В китайской провинции Нинся, отличающейся обширной солнечной и ветряной генерацией, к сети подключили новую гигантскую систему хранения энергии — мегабатарею мощностью 200 МВт и ёмкостью 400 МВт·ч. Этой энергии хватит на обеспечение электричеством 300 домов в течение года. Впрочем, батарея необходима не для этого, а для сглаживания пиков и спадов в потреблении электричества, когда солнце и ветер работают либо с недостатком мощности, либо с её избытком.

 Источник изображения: Hithium

Источник изображения: Hithium

Главная особенность введённой в строй в Китае мегабатареи в том, что она состоит из литий-железо-фосфатных аккумуляторов (LFP). Мегабатарея компании Telsa, предназначенная для тех же целей, например, состоит из литийионных аккумуляторов. Батареи LFP запасают меньше энергии, чем литийионные. Но они выгодны при длительной эксплуатации, поскольку выдерживают больше циклов перезаряда и, что самое главное, LFP-аккумуляторы менее взрывоопасны по сравнению с чисто литиевыми. Те же батареи Tesla уже горели в Австралии и в США, тогда как о пожарах в хранилищах на LFP-аккумуляторах пока не сообщалось, если мы ничего не упустили.

Батареи LFP для хранилища энергии в Нинся произвела китайская компания Hithium. Она пока мало известна за пределами Китая, но это наверняка вопрос времени. Hithium планирует построить завод для выпуска LFP-батарей с пиковой мощностью 135 ГВт•ч в год с 2025 года. Это потребует от неё впечатляющих инвестиций в размере $4,71 млрд, которые она уже пообещала выделить. Есть информация, что Hithium имеет договорённость на развёртывание восьми мегабатарей в Австралии, но пока завод не выйдет на полную мощность, к реализации этих проектов никто приступать не будет.

NuScale закончила разработку конструкторской документации для малого модульного реактора — на шаг ближе к строительству

Американская компания NuScale сообщила, что разработка конструкторской документации типового проекта атомной электростанции на малых модульных реакторах VOYGR завершена досрочно. Это послужит отправной точкой для развертывания конкретных проектов на площадках. Интерес к реакторам NuScale проявили страны Восточной Европы, Канада и ряд других. С выпуском документации преград на пути к строительству больше нет.

 Источник изображения: NuScale

Источник изображения: NuScale

Пакет конструкторской документации по проекту включает в себя свыше 12 тыс. вложений, куда входят полные расчёты материалов, перечни оборудования, спецификации, архитектурные и строительные чертежи и спецификации, подробные спецификации и расчеты системного дизайна, электрические схемы и перечни нагрузок, а также схемы механических трубопроводов и КИП. Сверх того, в комплект включена «всеобъемлющая 3D модель» электростанции.

Каждый энергетический модуль NuScale, на котором базируются атомные электростанции VOYGR, представляют собой реактор с водой под давлением, в котором все компоненты для производства пара и теплообмена объединены в единый блок мощностью 77 МВтэ. Это первый проект ММР, получивший одобрение Комиссии по ядерному регулированию США. Компания предлагает 12-модульную электростанцию VOYGR-12 мощностью 924 МВтэ, а также четырехмодульную VOYGR-4 (308 МВтэ) и шестимодульную VOYGR-6 (462 МВтэ) и другие конфигурации в зависимости от потребностей заказчика.

Основные компоненты реактора можно почти целиком изготавливать на заводе, а не на месте, как это происходит в случае строительства больших реакторов. Это значительно ускоряет строительство и ввод в эксплуатацию с хорошим контролем расхода средств, с чем не дружат масштабные стройки классических АЭС. Например, корейцы уже готовы штамповать корпуса реакторов NuScale на массовой основе, что обещает удешевить общие затраты.

В США компания NuScale вблизи Айдахо-Фолс с помощью коммунального предприятия Utah Associated Municipal Power Systems планирует построить АЭС из шести модулей. Ожидается, что ввод в эксплуатацию состоится к 2030 году. Недавно этот план подвергся интересной модификации. Компания Shell договорилась с NuScale создать в рамках данного проекта установку по добыче водорода из излишков вырабатываемых модулями тепла и электричества. Это будет отдельный проект, который не потребует значительных изменений в базовой документации.

Атомная энергетика возвращается в Японию — до конца десятилетия страна почти утроит число работающих реакторов

Власти Японии забыли об аварии на АЭС «Фукусима» или вынуждены сделать это под давлением глобального энергетического кризиса и необходимости декарбонизации экономики. Сегодня Управление по ядерному регулированию Японии одобрило план Министерства экономики и промышленности страны по резкой смене курса в энергетике. В работу не только вернут старые реакторы, но также будут построены новые реакторы, чтобы к концу десятилетия утроить долю выработки энергии АЭС.

 Вил на АЭС «Фукусима-1». Источник изображения:

Вид на АЭС «Фукусима-1». Источник изображения: Shohei Miyano, ASSOCIATED PRESS

Авария на АЭС «Фукусима-1» в 2011 году после землетрясения и цунами привела к остановке всех действующих атомных реакторов в Японии. В 2012 году впервые с 1970 года в стране не работал ни один атомный реактор. Реакторы в очень ограниченном количестве начали возвращать к работе с 2015 года, потому что альтернативы им не нашлось. Эти мероприятия считались временной мерой, а задача стояла к 2030 году полностью отказаться от атомной энергетики.

В этом году ситуация в мире радикально изменилась. Развитым странам стали недоступны энергоносители по приемлемой цене. Ещё летом премьер-министр Японии Фумио Кисида (Fumio Kishida) призвал запустить к зиме как минимум 9 из 10 разрешённых к продлению работы реакторов. Если верить свежей публикации Associated Press, в Японии всё же сумели ввести в эксплуатацию 10 реакторов из 17 допущенных к продлению сроков службы. Всего заявки были поданы на продление эксплуатации 27 реакторов.

Сегодня доля АЭС в электрогенерации в Японии составляет от 7 до 10 %. Согласно новому плану, к 2030 году эта доля должна увеличиться до 20–22 %. Больше речь не идёт об отказе от атомной энергетики в стране. Срок эксплуатации АЭС сможет теперь превышать 60 лет, а также будут построены новые реакторы. И если ранее работу реакторов в Японии продлевали после 40 лет работы на 20 лет (а теперь это можно будет делать не один раз), то согласно новому плану вопрос продления работы будет подниматься после 30 лет эксплуатации реакторов сроками на 10 лет до следующей экспертизы.

Японские эксперты считают, что новый план позволит коммунальным компаниям оставаться со старым оборудованием намного дольше и не вкладываться во что-то новое, например, в возобновляемые источники энергии. Что касается инновационных ядерных реакторов и термоядерных реакторов, о которых новые власти страны говорят как о перспективных для энергетики, то обсуждать тут особенно нечего. До 2030 года и даже дольше это всё будут только планы, которые не согреют и не обеспечат Японию энергией. Поэтому всё, что есть у страны — это проверенные временем реакторные технологии со своими плюсами и явными минусами.

Запуск перспективного реактора TerraPower Natrium задержится на два года из-за отсутствия замены топливу из России

Основанная Биллом Гейтсом компания TerraPower объявила о задержке как минимум на два года запуска перспективного ядерного реактора на расплавах солей. Вместо 2028 года новый реактор начнёт работу после 2030 года. Причина заключается в отсутствии необходимого топлива в США. Сегодня все его поставки идут в основном из России. Американские законодатели обещают приложить все усилия, чтобы в «реактор Гейтса» заложили топливо местного производства.

 Источник изображения: TerraPower

Источник изображения: TerraPower

Перспективные атомные реакторы на расплавах солей и ряд альтернативных проектов малых модульных реакторов ориентированы на топливо из обогащённого до 20 % урана-235. Это так называемое металлическое высокопробное низкообогащённое урановое топливо (HALEU). Небольшое его количество производится в США, но оно неспособно решить задачи американской энергетики. Основные его поставки идут из России, о чём неоднократно предупреждали и эксперты и законодатели, что крайне опасно с точки зрения национальной безопасности США.

Разработчики перспективных атомных реакторов в США не стали ждать решения вопроса с топливом и подготовили ряд проектов к началу строительства, надеясь, что вопрос с топливом со временем как-то решится. Далеко вперёд в этом вопросе вышел проект Natrium компании TerraPower. Только в прошлом году он получил грант от властей США на сумму свыше $1,5 млрд.

Демонстрационную АЭС на опытном реакторе Natrium решено строить рядом с угольной электростанцией Naughton вблизи города Кеммерер в штате Вайоминг. Заявку на начало строительства компания рассчитывала подать в середине 2023 года, чтобы к 2027 или 2028 году ввести АЭС в эксплуатацию. Это должен был быть малый модульный реактор мощностью 345 МВтэ. Топливо в него подаётся в расплаве солей натрия, что отражено в названии проекта. В ходе реакции распада возникают быстрые нейтроны, энергию которых получает носитель и дальше нагревает воду, которая превращается в пар и вращает турбину.

Конструкция и принцип работы реактора Natrium позволяют создать внушительный буфер по накоплению тепла с пиковой мощностью 500 МВтэ. Это даёт возможность балансировать мощностью для сглаживания нагрузок, что невозможно в случае классических реакторов.

Отсутствие поставок топлива HALEU из России минимум на два года задержит запуск реактора Natrium и электростанции на его основе. Несмотря на это компании TerraPower и её партнёр в лице компании Global Nuclear Fuel-Americas (GNF-A) в октябре этого года официально запустили строительство завода по изготовлению топлива для реактора Natrium и других проектов. Топливо будет изготавливаться из сырья HALEU неизвестного пока происхождения.

Перспективным поставщиком топлива HALEU американского производства может стать компания Centrus Energy. Она уже выпускает его в небольших объёмах и через несколько лет обещает увеличить производство. Помочь в этом могут новые законодательные инициативы в США. Отрасль нуждается как в стимуляции, так и в переменах, а без поддержки государства бизнес не готов идти на риск.

Малые атомные реакторы могут стать источником водорода — для них это будет побочный продукт

Компания Shell подписала контракт с американской компанией NuScale, которая первой получила лицензию Комиссии по ядерному регулированию США (NRC) на строительство в стране малых модульных атомных реакторов. По контракту Shell и NuScale проработают проект производства водорода на таких реакторах. Модульные АЭС обеспечат мир не только чистой электрической и тепловой энергией, но также укрепят основу водородной энергетики, которая заменит природный газ.

 Безопасная АЭС на модульных реакторах в представлении художника. Источник изображения: NuScale Power

Безопасная АЭС на модульных реакторах в представлении художника. Источник изображения: NuScale Power

Основной смысл производства водорода как сопутствующего продукта работы АЭС в том, что реакторы вырабатывают достаточно много избыточного тепла и электричества, чтобы хотелось использовать их с толком, а не просто рассеивать в окружающем пространстве.

Реакторы, даже малые, это инерционные машины. В случае появления излишков мощности её было бы желательно направить на выполнение полезной работы. В частности, на электролизные ячейки для получения водорода. Затем водород можно либо просто сжечь для получения тепла или электричества или использовать как топливо для транспорта и механизмов.

Наделить малые модульные реакторы решениями для баланса мощности в виде побочного производства водорода стало бы высшим пилотажем в сфере атомной энергетики. Малые реакторы ценны сами по себе, поскольку обещают такую выгоду, как быстрое тиражирование АЭС от проекта до ввода в строй без обычного перерасхода средств и затягивания строительства, чем болеют полномасштабные АЭС. И если к этому добавится возможность вырабатывать, хранить и обеспечивать транспортировку водорода, то это будет максимум, который можно будет выжать для будущей экологичной экономики.

Компании Shell и NuScale совместно оценят такую возможность. Они разработают проект установки по побочной выработке водорода модульными реакторами NuScale, испытают модели, способы интеграции, дадут оценку экономической эффективности, очертят границы возможностей и так далее. Возможно даже, что первый в США малый модульный реактор NuScale, который планируется построить на базе Национальной лаборатории в Айдахо, получит подобные установки для практического эксперимента, благо там нет ничего принципиально сложного.

США объявили о прорыве в термоядерной энергетике — реакция синтеза дала в 1,5 раза больше энергии, чем ушло на её запуск

Американские учёные из Ливерморской национальной лаборатории им. Э. Лоуренса (LLNL) действительно смогли достичь термоядерного воспламенения — самоподдерживающейся реакции термоядерного синтеза, в ходе которой на выходе получается больше энергии, чем было потрачено на её запуск. Об этом сегодня официально сообщили Министерство энергетики США и Национальное управление по ядерной безопасности (NNSA), назвав это научным подвигом, к которому шли десятилетиями.

 Источник изображений: LLNL

Источник изображений: LLNL

О том, что специалисты National Ignition Facility (NIF) при Ливерморской лаборатории, смогли достичь реакции термоядерного синтеза с положительным выходом энергии, стало известно ещё на днях. Теперь же данные официально подтвердились: 5 декабря команда исследователей провела первый в истории эксперимент по управляемому термоядерному синтезу, в результате которого было произведено больше энергии, чем потрачено лазерной энергии для запуска реакции.

 Часть установки, в которой была запущена реакция синтеза

Часть установки, в которой была запущена реакция синтеза

В рамках эксперимента самая мощная в мире лазерная установка, включающая 192 лазера, доставила до крошечной капсулы с топливом 2,05 МДж энергии, а в результате реакции учёные получили 3,15 МДж энергии. То есть на выходе оказалось более чем в полтора раза больше энергии, чем было затрачено.

Термоядерный синтез — это реакция, при которой два лёгких атомных ядра объединяются в одно более тяжелое, при этом генерируя большой объём энергии. То же самое происходит внутри звёзд. Американские учёные ещё в 60-е годы прошлого века предположили, что для запуска реакции синтеза можно использовать лазеры, с помощью которых получится создать огромное давление и температуру, необходимые для запуска реакции. Этот метод был назван управляемым термоядерным синтезом с инерционным удержанием, и спустя множество десятилетий работы его удалось воплотить в лабораторных условиях.

 Хольраум с топливом

Хольраум с топливом

Чтобы выполнить термоядерное зажигание, капсулу с топливом поместили в хольраум — крошечную камеру, стенки которой превращают лазерное излучение в рентгеновские лучи. Эти лучи сжимают топливо до тех пор, пока оно не взорвётся, создавая плазму с крайне высокими температурой и давлением.

 Визуализация облучения термоядерного топлива лазерными лучами, которые преобразуются в рентгеновские

Визуализация облучения топлива лазерными лучами, которые преобразуются в рентгеновские для запуска синтеза

В рамках многолетних исследований в LLNL была построена серия все более мощных лазерных систем, что привело к созданию NIF — крупнейшей и самой мощной лазерной системы в мире. NIF имеет размер спортивного стадиона и использует мощные лазерные лучи для создания температур и давлений, подобных тем, которые возникают в ядрах звезд и планет-гигантов.

Конечно, до момента, когда термоядерная энергетика станет обыденностью, пройдёт ещё немало времени, и для этого потребуется провести ещё массу исследований. Тем не менее, значимость первого удачного эксперимента по термоядерному воспламенению огромна — возможно, в итоге он станет отправной точкой в революции в мировой энергетике. Термоядерная энергия может стать альтернативой как обычным атомным электростанциям, работающим наоборот за счёт расщепления атомов, так и углеводородному топливу и избавить людей от вредных выбросов в атмосферу.

«Это знаменательное достижение для исследователей и сотрудников NIF, которые посвятили свою карьеру тому, чтобы термоядерное зажигание стало реальностью, и эта веха, несомненно, повлечет за собой ещё больше открытий, — сказала министр энергетики США Дженнифер М. Грэнхольм (Jennifer M. Granholm). Её также поддержал директор LLNL доктор Ким Будил (Kim Budil): «Термоядерное воспламенение в лаборатории — одна из самых значительных научных задач, когда-либо решаемых человечеством, и ее достижение — это триумф науки, техники и, прежде всего, людей».

В Китае на номинальную мощность вывели «двухтактный» ядерный реактор — два реактора работают на одну турбину

Китай стал первой страной в мире, где начал работать модульный реактор. Вчера каждый из двух реакторов «Шидаовань-1» (Shidaowan-1) вышел на номинальную тепловую мощность 250 МВт(т). Для этого им понадобился один год. Оба реактора крутят одну газовую турбину электрической мощностью 211 МВт(э). Успешное завершение проекта открывает дорогу к созданию установки с шестью реакторами для обслуживания одной 650-МВт(э) турбины.

 АЭС «Шидаовань» с парой реакторов HTR-PM. Источник изображения: CNNC

АЭС «Шидаовань» с парой реакторов HTR-PM. Источник изображения: CNNC

Реактор «Шидаовань-1» интересен не только модульным подходом, хотя это путь к гибким проектам в широком диапазоне задач и стоимости. Ключевой интерес к проекту заключён в том, что это первый в мире новейший проект высокотемпературного газоохлаждаемого реактора с галечным слоем (HTR-PM). Топливом служат 60-мм шарики из графита, внутри которых находится обогащённый до 8,5 % уран-235. Шарики лежат в реакторах, как галька на пляже, а сквозь неё продувается нагретый до 250 °C гелий. В каждом реакторе около 245 тыс. таких шариков.

При проходе сквозь «галечный слой» гелий разогревается до 750 °C. На входе в турбину температура ниже — она опускается до 567 °C. Топливные шарики выдерживают температуры до 1620 °C без разрушения, что сохраняет их целостность даже в случае аварий. Технология считается высоконадёжной и перспективной. Настолько, что власти Великобритании сделали ставку на HTR-PM-реакторы как на самые перспективные для будущего развёртывания в стране.

Китайский реактор «Шидаовань-1» ещё не принят в коммерческую эксплуатацию. Но этот шаг не задержится. Площадка «Шидаовань», как ожидается, вместит ещё 18 реакторных блоков. В этом вся ценность модульного подхода — реакторы строятся относительно быстро, сравнительно недорого и по мере появления в них потребности.

На просторах Атлантики появятся пирамиды — это будут новые плавучие ветряные генераторы

Французская компания Eolink получила финансовую поддержку для строительства первого в мире демонстратора плавучей ветряной турбины необычной конструкции. Вместо «пропеллера на палочке» предложено построить что-то типа «колеса обозрения» — стойки в виде пирамиды с пропеллером посередине. Разработчик утверждает, что пирамидальное шасси обеспечит значительную экономию материала и недорогое обслуживание — слабое место всех морских ветряков.

 Источник изображений: Eolink

Источник изображений: Eolink

Наиболее сильные ветры регистрируются в открытом море, а не на шельфе с малыми глубинами. Если распространять на открытое море привычную для суши и шельфа конструкцию ветряка — длинный шест с горизонтально расположенным ротором, то стоимость материалов для башни, гондолы и противовеса станет заоблачной, и тем стремительнее она будет расти, чем длиннее лопасти и выше башня.

Пирамидальный каркас, напротив, исключает необходимость в большой гондоле-противовесе пропеллера, а две точки опоры повысят износостойкость подшипников. На саму башню даже из четырёх опор, собранных в пирамиду, понадобится меньше материала, чем на одну стойку, к прочности которой будут предъявляться намного большие требования. Наконец, башне из четырёх стоек на квадратной раме с поплавками в четырёх точках потребуется намного меньше подводного балласта для удержания равновесия на водной глади.

Если балласта будет меньше и он не упрётся в мелкое дно, то такую стойку удобно будет обслуживать в доке, а не в открытом море с огромной почасовой арендной платой за морской кран. Отсутствие балласта и хорошая плавучесть также позволит упростить систему ориентации ветрогенераторов по ветру. Повороты башни больше будут не нужны, что дополнительно упростит и удешевит всю конструкцию. Плавучая «трапеция» сама будет поворачиваться для работы под оптимальным к ветру углом чисто в силу законов физики, воле морского течения и силе ветра — тут главное будет правильно закрепить её на дне, чтобы она свободно вращалась вокруг якорного троса.

Некоторое время назад компания Eolink получила гарантии на инвестиции на сумму около $23 млн от испанской компании Acciona Energy и фирмы по управлению проектами Valorem. На эти деньги будет построен 5-МВт прототип, который к 2024 году будет проверен на испытательном полигоне SEM-REV в французских водах Атлантического океана.

Вес прототипа достигнет 1100 т. Диаметр лопастей составит 143 м, а каждая сторона квадратного основания стойки-пирамиды будет достигать 52 м. После испытания компания обещает собрать достаточно данных, чтобы приступить к следующему этапу проекта — созданию 20-МВт «пирамидальной» плавучей морской турбины. Экономия на материалах и обслуживании обещает сделать электрическую энергию, добываемую такими ветряными турбинами, на 20–25 % дешевле, чем у «ветряков на палочках».

В Японии начнут добывать электричество из снега

В декабре в японском городке Аомори стартуют испытания необычной системы производства электричества. Электроэнергия будет вырабатываться благодаря разнице температур между обычным снегом и окружающим воздухом. Раньше городские службы Аомори сбрасывали собранный на улицах снег в море, тогда как теперь ему нашлось неожиданное применение в качества одного из источников энергии.

 Источник изображения: Kyodo

Источник изображения: Kyodo

Городские службы совместно с ИТ-компанией Forte и Токийским университетом электросвязи оснастили бассейн в местной закрытой школе системой теплопроводных трубок и жидкостью. Коммунальщики будут сбрасывать в бассейн собранный с улиц снег, тогда как с другой стороны трубки будут выведены на открытый воздух и подставлены лучам Солнца. За счёт разницы температур по трубкам начнётся конвекционное движение жидкости. Жидкость, в свою очередь, будет приводить в действие микротурбину. Чем выше разница температур, тем больше будет отдаваемая мощность.

Растаявший в бассейне снег можно утилизировать как обычную талую воду, а обычно снежные в этом районе зимы не дадут бассейну пустовать.

Испытания системы продлятся до марта. Ожидается, что её эффективность сравнится с выработкой энергии солнечными панелями, а экологическая чистота будет выше, чем у ветряной генерации. И действительно, отходов у предложенного решения со снегом и бассейном практически не будет, тогда как солнечные панели и ветряные турбины подлежат со временем утилизации и не имеют возможности для полной переработки.

В Японии построят самый большой в мире плавучий ветрогенератор — размах лопастей составит 200 метров

Японская энергетическая компания Toda и специалисты Осакского университета разработают проект самого большого в мире плавучего ветрогенератора, сообщает издание Nikkei Asia. Инженеры собираются построить прототип турбины, способной генерировать до 15 МВт электроэнергии. Эксперимент будет проводиться в несколько этапов. К финальному планируется приступить в 2025 году.

 Источник изображения: Unsplash / Nicholas Doherty

Источник изображения: Unsplash / Nicholas Doherty

В 2023 году исследовательская группа разработает проект плавучей турбины большой мощности. Группа состоит из 10 инженеров компании Toda и Осакского университета, специализирующихся на морских ветрогенераторах и морской технике. Ключевая задача этого этапа работы будет заключаться в разработке компьютерных моделей для анализа рисков и нагрузок на плавучую платформу, а также в разборе вопросов, связанных с массовым производством подобных установок и передачей электроэнергии.

В 2024 году инженеры создадут демонстрационную установку плавучей турбины, способную генерировать 10 МВт электроэнергии. А в 2025 году планируется построить ветрогенератор с размахом лопастей примерно 200 метров, что в три раза больше, чем у нынешних аналогичных генерирующих установок. Согласно предварительным прогнозам, такая турбина сможет генерировать 12–15 МВт электроэнергии.

По сравнению со стационарными ветрогенераторами, которые устанавливаются на поверхность морского дна, плавучие турбины обходятся дороже в установке и обслуживании. Этот фактор мешает их широкомасштабному развёртыванию даже в Европе, где за последние годы морская ветроэнергетика получила значительное развитие. Однако отсутствие вокруг Японии мелководных морей делает проект плавучих ветрогенераторов более привлекательным. Согласно оценкам экспертов, потенциал развёртывания плавучих турбин в Японии в три раза выше с точки зрения площади акватории, чем у стационарных морских установок.

Консорциум компаний во главе с Toda эксплуатирует первую коммерческую плавучую турбину рядом с побережьем префектуры Нагасаки. Стоимость одного киловатта добываемой электроэнергии установкой мощностью 2 МВт составляет 36 йен (около $0,26). Чтобы снизить себестоимость генерации электроэнергии ниже 10 йен за киловатт-час и сделать ветрогенераторы конкурентоспособными с тепловыми электростанциями, необходимо значительно увеличить мощность морских турбин.

Орбитальная станция «Тяньгун» поможет Китаю в создании космической солнечной электростанции

Китайская космическая станция «Тяньгун», строительство которой не так давно было закончено после стыковки с модулем «Мэнтянь», примет участие в важном эксперименте. Он предусматривает передачу энергии с расположенной в космосе солнечной электростанции на большие расстояния. Ожидается, что подобные эксперименты зададут новое направление и придадут импульс гонке космических держав.

 Источник изображения: Синьхуа

Источник изображения: Синьхуа

Как сообщил генеральный конструктор проекта станции Ян Хун (Yang Hong), выступая на конференции в Хайнане во вторник, «Тяньгун» сыграет ключевую роль в реализации проекта китайской космической солнечной энергостанции (SSPS) — она станет тестовой платформой для высоковольтных электрических устройств и поможет в сборке в космосе структур очень большого размера.

На лекции, прочитанной для инженеров и учёных со всего мира, Ян заявил, что орбитальная станция имеет ресурсы и возможности для демонстрации и проверки ключевых технологий, ускорения технологических прорывов и сбора данных об орбитальных экспериментах для проекта SSPS. По его словам, новые технологии в числе прочего помогут Китаю добиться углеродной нейтральности.

По словам Яна, китайская космическая станция будет участвовать в большом числе критически важных экспериментов, которые позволят сделать научную фантастику реальностью. По его словам, «Тяньгун» изначально разрабатывалась и строилась с дополнительными «порталами», обеспечивающими подключения высокоэнергетического электрического оборудования. Тем не менее генерация высокоэнергетических лучей неизбежно приведёт к выделению тепла, избавиться от которого может быть не так просто. Так или иначе, уже существующая станция является идеальной платформой для экспериментов на орбите.

Известно, что для строительства самой электростанции предполагается использовать грузовые корабли, прибывающие к Тяньгун — обычно их отправляют сгорать в атмосферу, но с началом эксперимента они будут использоваться, как «кирпичики» для строительства солнечных мощностей. Помогать в строительстве будет сама «Тяньгун» с помощью роботизированных рук-манипуляторов.

Первоначально будет реализован небольшой проект, электростанцию разместят на 100 км выше, чем основную станцию — экспериментальный проект будет использован для отработки основных технологий, включая передачу микроволновых лучей до питания спутников лазерами большой мощности.

Передачу энергии на Землю Китай намерен организовать уже в ближайшие годы. Малая электростанция для обеспечения энергией военных аванпостов должна быть введена в эксплуатацию к 2030-м годам, а коммерческое энергопроизводство должно начаться в 2050-е. Известно, что в конце прошлого месяца появилась новость о запуске США первого прототипа космической солнечной электростанции уже в декабре.

Дополнительно в июне команда китайского проекта орбитальной солнечной электростанции рассказала о его подробностях в журнале Chinese Space Science and Technology. Известно, что речь идёт о полноразмерной солнечной электростанции, которая будет представлять собой структуру шириной 1 км, способную передавать на Землю энергию через микроволны гигаваттной мощности с расстояния 36 тыс. км. В отличие от земных солнечных электростанций, работающих только в течение светового дня, новый проект сможет функционировать круглосуточно, аккумулируя энергию, когда в Китае будет ночь.

Электростанция на геостационарной орбите сможет направлять микроволновый луч практически в любую точку мира, по данным издания SCMP, обеспечивая энергией в том числе военное оборудование и отдалённые аванпосты, а некоторые исследователи спекулируют на рассказах о том, что такая технология может прямо использоваться как оружие. Известно, что над разработкой похожих решений уже работают США, Евросоюз, Великобритания, Япония и другие страны. Пока учёные не пришли к единому мнению, могут ли высокоэнергетические лучи навредить коммуникациям, здоровью людей и окружающей среде.

По данным некоторых исследований микроволны, практически тех же частот, что и используемые Wi-Fi роутерами, будут безопасны для людей, во всяком случае — пока те не находятся в зоне прямого приёма энергии. Тем не менее достоверно неизвестно, каким образом можно сохранить стабильность узкого луча на дистанции в десятки тысяч километров. Кроме того, некоторые учёные предполагают, что интенсивная передача энергии из космоса на Землю может повредить ионосфере, что приведёт буквально к непредсказуемым последствиям для экологии Земли.

window-new
Soft
Hard
Тренды 🔥
У TikTok появились шансы остаться в США — теперь в этом замешан Илон Маск 6 ч.
Microsoft тестирует новый браузер для геймеров, который выводится поверх игры 6 ч.
Квартальная выручка на рынке облачных инфраструктур подскочила на 21 %, превысив $80 млрд 8 ч.
Новая статья: Little Big Adventure – Twinsen's Quest — криво, но всё ещё мило. Рецензия 9 ч.
Microsoft сломала игры Ubisoft последним крупным обновлением Windows 11 9 ч.
«Сердечное спасибо всем»: аудитория олдскульной ролевой игры Sea of Stars превысила 6 млн игроков 9 ч.
Huawei предлагает для HarmonyOS в 200 раз меньше приложений, чем есть в Google Play — разрыв планируется сократить в течение года 23-11 17:29
World of Warcraft исполнилось 20 лет — это до сих пор самая популярная ролевая игра в мире 23-11 15:45
Microsoft хочет, чтобы у каждого человека был ИИ-помощник, а у каждого бизнеса — ИИ-агент 23-11 12:20
«Атака на ближайшего соседа» сработала — хакеры удалённо взломали компьютер через Wi-Fi поблизости 23-11 11:08
LG поможет Samsung с нуля создать «настоящий ИИ-смартфон» — он выйдет в 2025 году и вы не сможете его купить 8 ч.
AIC и ScaleFlux представили JBOF-массив на основе NVIDIA BlueField-3 9 ч.
Nvidia нарастила выручку в Китае на 34 % даже в условиях санкций 12 ч.
Nvidia заинтересована в получении HBM3E от Samsung и верит в сохранение международного сотрудничества при Трампе 13 ч.
xMEMS представила бескатушечные МЭМС-динамики для открытых наушников, ноутбуков и носимой электроники 21 ч.
Microsoft и Meta представили дизайн ИИ-стойки с раздельными шкафами для питания и IT-оборудования 23-11 15:57
Eviden создаст для Финляндии ИИ-суперкомпьютер Roihu производительностью 49 Пфлопс 23-11 15:35
iFixit не нашли улучшений ремонтопригодности у нового Apple MacBook Pro на чипе M4 Pro 23-11 13:42
Вселенское ДТП на скорости 3,2 млн км/ч — «Джемс Уэбб» пролил свет на столкновение галактик 23-11 13:40
Стартап Enfabrica выпустил чип ACF SuperNIC для ИИ-кластеров на базе GPU 23-11 12:38