реклама
Новости Hardware

Для космоса разрабатываются в 100 раз более лёгкие солнечные панели, но они ещё не вышли из лабораторий

Учёные из Университета Пенсильвании создают солнечные элементы из нетипичного материала — из условно двумерных дихалькогенидов переходных металлов (TMDC). Эти материалы обладают сравнительно низкой эффективностью преобразования света в электричество, но они в сто раз легче современных кремниевых фотопанелей. Для космоса малый вес — это решающее преимущество. Но над панелями из ДПМ ещё предстоит поработать.

 Источник изображения: Pixabay

Источник изображения: Pixabay

Толщина ДПМ-плёнки не больше нескольких атомов. Это на несколько порядков тоньше, чем слой кремния или арсенида галлия в современных фотопанелях. Это позволит сделать солнечные ячейки из ДПМ в сто или более раз легче. Для расширения присутствия человека в космосе — на орбите, лунах и других планетах — вес транспортируемых с Земли грузов будет иметь критическое значение. Придёт время, и от кремния в космической энергетике придётся отказаться. И тогда, уверены исследователи, настанет звёздный час лёгких фотопанелей из дихалькогенидов переходных металлов.

Впрочем, у ДПМ-материалов есть существенный недостаток. Все созданные до сегодняшнего дня образцы фотоэлементов на их основе демонстрировали КПД не выше 5 %. В пересчёте на вес это всё равно лучше, чем у кремния, но в идеальном случае КПД перспективного материала необходимо повышать, что, например, можно делать путём оптимизации структуры фотоячейки. Именно этим занялись учёные из Университета Пенсильвании и добились ощутимого успеха — предложили структуру ДПМ-ячейки с КПД 12 %.

Следует уточнить, что заявленный КПД достигнут на цифровой модели фотоэлемента. Исследователи решили начать не с опытов, а с моделирования, в чём есть определённый смысл — так дешевле и быстрее. Но на базе цифровой модели и выработанных методик, уверены специалисты, они или их коллеги смогут в ближайшие четыре–пять лет представить физические образцы солнечных элементов из дихалькогенидов переходных металлов с КПД не менее 10 %.

 Источник изображения: Device

Источник изображения: Device

Секрет разработки, о которой учёные рассказали в свежем номере журнала Device, кроется в многослойной структуре элемента (плёнка на плёнке, когда начинают работать многочисленные переотражения фотонов), а также в конструкции электродов, которая позволяет эффективно управлять экситонами — главными действующими элементами двумерных ДПМ-структур. Но всё это пока на бумаге. Ждём практической реализации.

Источник:

Если вы заметили ошибку — выделите ее мышью и нажмите CTRL+ENTER.
Вечерний 3DNews
Каждый будний вечер мы рассылаем сводку новостей без белиберды и рекламы. Две минуты на чтение — и вы в курсе главных событий.
Материалы по теме
window-new
Soft
Hard
Тренды 🔥
Huawei нарастила долю китайских компонентов в смартфонах серии Pura 70 5 ч.
Renault более не может рассчитывать на помощь Volkswagen в создании электромобиля за 20 000 евро 6 ч.
Пользователи новых iPad Pro обратили внимание на зернистость экрана 11 ч.
Минцифры пообещало тестовые зоны 5G по всей России и полноценные сети в городах-миллионниках до 2030 года 14 ч.
Новый iPad Pro получил медный логотип и оказался более ремонтопригодным, чем предшественник 14 ч.
Samsung готовит ноутбуки Galaxy Book4 Edge и Edge Pro с Arm-процессорами Qualcomm 17 ч.
256 ядер и 12 каналов DDR5: Ampere обновила серверные Arm-процессоры AmpereOne и перевела их на 3-нм техпроцесс 18 ч.
Короткие кабели затормозили внедрение DisplayPort 2.1 UHBR20 — сделать длиннее не получается 22 ч.
Новая технология активного шумоподавления с ИИ позволяет выделить определённые звуки и убрать все лишние 23 ч.
Чипы стали новой нефтью в борьбе мировых держав за лидерство 24 ч.