реклама
Теги → вселенная
Быстрый переход

Загадочный объект в нашей Галактике уже 33 года подаёт радиосигналы каждые 22 минуты

Группа астрофизиков под руководством специалиста из Австралии обнаружила в нашей галактике источник повторяющихся радиосигналов, которому пока нет уверенного научного объяснения. Этот сигнал длительностью около 5 минут приходит к нам с расстояния 15 тыс. световых лет каждые 22 минуты в течение как минимум 33 лет. Это очень и очень медленный сигнал, что выводит открытие за рамки известной нам физики.

 Магнетар в представлении художника. Источник изображения: ICRAR

Магнетар в представлении художника. Источник изображения: ICRAR

«Этот замечательный объект бросает вызов нашему пониманию нейтронных звезд и магнетаров, которые являются одними из самых экзотических и экстремальных объектов во Вселенной», — сказала руководитель группы, астрофизик Наташа Харли-Уокер (Natasha Hurley-Walker) из Университета Кертина Международного центра радиоастрономических исследований (ICRAR) в Австралии.

В прошлом году астрономы нашли в архивах наблюдений подобный долгопериодический радиобъект, который получил обозначение GLEAM-X J162759.5-523504.3. Он излучал радиосигнал каждые 18 минут, но с 2018 года пропал из эфира. Группа Харли-Уокер попыталась обнаружить нечто подобное прямыми наблюдениями и нашла искомое — объект GPM J1839-10 с периодом радиосигнала 22 мин. Более того, изучение архивов показало, что источник фиксируется с 1988 года, но никто не обращал на него внимания, считая такое невозможным в принципе.

Дело в том, что подобные долгопериодические излучения лежат ниже так называемой «долины смерти» для магнетаров. Для возникновения мощного радиоизлучения напряженность магнитного поля должна быть выше определенного порога, который зависит от скорости вращения магнетара. Чем медленнее вращается магнетар — одна из разновидностей нейтронных звёзд, тем реже возникает радиосигнал. Но слишком медленное вращение магнетара просто неспособно создать напряжённость магнитного поля, достаточную для появления радиовсплеска.

 Серым представлена «долина смерти», где обитают типичные магнетары. Источник изображения: N. Hurley-Walker et al. / Nature, 2023

Серым представлена «долина смерти», где обитают типичные магнетары. Источник изображения: N. Hurley-Walker et al. / Nature, 2023

«Обнаруженный нами объект вращается слишком медленно, чтобы генерировать радиоволны — он находится ниже линии смерти», — пояснила Херли-Уокер.

Тем самым перед учёными вырисовываются две перспективы — либо менять физику возникновения радиовсплесков магнетаров, либо считать, что это сигналит звезда какого-то иного неустановленного типа. Например, это могут быть звёзды типа белых карликов в намагниченном и изолированном состоянии. В любом случае, открытие новых долгопериодических источников радиосигналов намекает на то, что подобное происходит во Вселенной чаще и гуще, чем мы себе представляли.

Астрофизики открыли двуликую звезду — это белый карлик с необычной химической структурой

Учёные обнаружили необычного белого карлика — он обладает двумя разными «лицами». Одна сторона звезды состоит из водорода, а другая — из гелия. Этот уникальный объект получил имя «Янус» (Janus) в честь древнеримского бога с двумя лицами, обращёнными одновременно в прошлое и будущее. Новое открытие ставит под сомнение представления астрофизиков о строении звёзд и открывает новые горизонты для астрономических исследований.

 Источник изображения: K. Miller / Caltech / IPAC

Источник изображения: K. Miller / Caltech / IPAC

Белые карлики — это, по сути, обугленные ядра мёртвых звёзд. Одним из первых обнаруженных белых карликов был 40 Эридан B (40 Eridani B), плотность которого превышала плотность Солнца в 25 000 раз, при этом его размеры были сопоставимы с размерами Земли. Это наблюдение казалось астрономам невозможным. Второй обнаруженный белый карлик, Сириус B (Sirius B), оказался ещё более плотным — примерно в 200 000 раз плотнее Земли.

Такая экстремальная плотность обусловлена необычным механизмом, обеспечивающим внутреннее давление звезды, необходимое для противостояния силе гравитации. В обычных звёздах энергия высвобождается за счёт ядерного синтеза, но в белых карликах этот процесс уже остановлен. В результате гравитация сжимает всю массу звезды настолько сильно, что электроны в ней сближаются, образуя вещество с электронной дегенерацией. Это происходит из-за квантовой механики, в частности, принципа запрета Паули, согласно которому каждый электрон в атоме должен иметь уникальный набор квантовых чисел. В условиях экстремальной плотности, как в белых карликах, все возможные состояния электронов заполняются, создавая силу, противостоящую дальнейшему сжатию звезды.

Чем больше масса белого карлика, тем меньше его размер, поскольку ему необходимо создать достаточное внутреннее давление для поддержания всей этой массы. И поскольку поверхностная гравитация звезды в 100 000 раз превышает гравитацию Земли, более тяжёлые атомы в её атмосфере опускаются, оставляя на поверхности более лёгкие атомы. Поэтому атмосфера белых карликов обычно состоит из чистого водорода или чистого гелия.

Вот почему последнее открытие белого карлика так интересно. Астроном Илария Кайаццо (Ilaria Caiazzo) из Калифорнийского технологического института (CIT), впервые заметила Януса (официальное обозначение ZTF J203349.8+322901.1) с помощью установки Zwicky Transient Facility (ZTF) для поиска сильно магнетизированных белых карликов. ZTF проводит роботизированные обзоры ночного неба, ища объекты, которые вспыхивают или меняются в яркости: сверхновые, звёзды, поглощаемые чёрными дырами, а также астероиды и кометы.

Дополнительные наблюдения с помощью инструмента CHIMERA и Большого Канарского телескопа показали, что Янус оборачивается вокруг своей оси примерно каждые 15 минут. Но именно данные, полученные с помощью обсерватории Кека на Гавайях, раскрыли необычный спектр звезды, то есть её характерный химический отпечаток: одна сторона водород, другая гелий. Кайаццо и её соавторы полагают, что это может быть белый карлик, пойманный в процессе редкого перехода от водородной к гелиевой поверхности.

Однако это не объясняет, почему одна сторона карлика переходит в другую быстрее, чем это происходит в обратную сторону. В настоящее время у астрономов есть две гипотезы объяснения этого странного явления, обе связаны с магнитными полями. Одна из них предполагает, что магнитное поле Януса может быть асимметричным. «Магнитные поля могут препятствовать смешиванию материалов. Поэтому, если магнитное поле сильнее с одной стороны, то на этой стороне будет меньше смешивания и, следовательно, больше водорода», — говорит Кайаццо. Возможно, гелиевая сторона Януса выглядит такой пузырчатой потому, что конвекция удалила тонкий слой водорода на поверхности, обнажив находящийся под ним гелий.

Другая гипотеза заключается в том, что магнитные поля звезды могут менять давление и плотность атмосферных газов. «Магнитные поля могут привести к снижению газового давления в атмосфере, и это может позволить образоваться "океану" водорода там, где магнитные поля самые сильные. Мы не знаем, какая из этих теорий верна, но мы не можем придумать другой способ объяснения асимметричных сторон без магнитных полей», — говорит соавтор Джеймс Фуллер (James Fuller), теоретический астрофизик из CIT.

Следующим шагом будет поиск других «двуликих» белых карликов. Эта задача станет проще, когда начнёт работу обсерватория Веры Рубин в Чили, оснащённая 8,4-метровым телескопом для сканирования всего неба каждые несколько ночей. Также в этом поможет пятый Слоановский цифровой небесный обзор (SDSS-V), международный проект по созданию трёхмерной карты Вселенной. Учёные уже наблюдали менее экстремальные спектральные вариации в другом белом карлике (GD 323). «Янус, возможно, не является уникальным случаем, а скорее самым ярким представителем класса "двуликих" белых карликов», — заключают учёные астрофизики.

«Джеймс Уэбб» заметил в юных галактиках необъяснимо много углеродной пыли

Космическая обсерватория «Джеймс Уэбб» продолжает срывать покровы и расширять границы знаний. Новое наблюдение показало, что на заре Вселенной было необъяснимо много углерода, который, согласно нашим гипотезам, не мог там появиться в фиксируемых объёмах. Благодаря новым открытиям учёные получают новые данные для уточнения теорий эволюции звёзд, галактик и Вселенной.

 Редкая звезда типа Вольфа — Райе, которая «пылит» не хуже сверхновых. Источник изображения: NASA, ESA, CSA, STScI, Webb ERO

Редкая звезда типа Вольфа — Райе, которая «пылит» не хуже сверхновых. Источник изображения: NASA, ESA, CSA, STScI, Webb ERO

Как сообщили учёные Кембриджского университета (Великобритания) в своей статье в журнале Nature, углеродная пыль в больших объёмах обнаружена в галактиках на рубеже 800 млн лет после Большого взрыва. Углерод и другие тяжёлые атомы (по представлению астрофизиков, кроме водорода и гелия тяжёлые все элементы) рождаются только в горниле звёзд и в виде пыли могут быть представлены преимущественно в одном случае — когда звезда превратится в сверхновую и развеет свою оболочку по окружающей Вселенной. Исходя из этого, на отметке 800 млн лет не должно было быть углерода и всего остального в заметных объёмах, поскольку звёзды просто не успели бы проэволюционировать до нужных кондиций и процессов.

Наблюдения «Уэбба» опровергли устоявшееся в научной среде мнение. Спектральные линии углерода абсолютно чётко прослеживаются во многих галактиках вблизи временной границы на уровне одного миллиарда лет после Большого взрыва. Это означает, что похожие химические процессы шли повсеместно и с одинаковой скоростью, и явно не так, как мы предполагали. Эти данные внесут значительные коррективы в модели эволюции звёзд и в наше понимание этих процессов.

«Наше обнаружение углеродистой пыли на красных смещениях 4–7 позволяет существенно ограничить модели и сценарии производства пыли в ранней Вселенной», — пишет группа специалистов под руководством космолога Йориса Витстока (Joris Witstok) из Кембриджского университета (Великобритания).

Впрочем, для обнаруженной странности с углеродом есть объяснение. Согласно одной из гипотез, первые звёзды во Вселенной были сверхмассивными. Такие звёзды эволюционируют намного быстрее, чем звёзды меньшей массы. Это также объясняет, почему мы до сих пор не видели ни одной из первых звёзд (они относятся к так называемому III населению). Все они превратились в сверхновые очень и очень рано и, следовательно, могли создать углерод и другие металлы в то время, куда наши инструменты ещё не могут заглянуть.

Учёные узнали, как блазары разгоняют частицы до околосветовых скоростей

Во Вселенной происходят физические явления, которые никогда не будет возможно повторить в земных условиях. Наблюдая такие явления, учёные познают мир, и новые инструменты помогают делать это лучше и точнее, как новая рентгеновская обсерватория NASA IXPE. Этот инструмент помог вскрыть структуру электромагнитных полей джетов блазаров, где частицы разгоняются до околосветовых скоростей.

 Художественное представление релятивистской струи, бьющей из центра чёрной дыры, окружённой аккреционным диском. Источник изображения: NASA/Pablo Garcia

Художественное представление релятивистской струи, бьющей из центра чёрной дыры, окружённой аккреционным диском (в рентгене видна «белая область» — это фронт ударной волны). Источник изображения: NASA/Pablo Garcia

Поразительно, что открытие сделано с расстояния 400 млн световых лет от Земли. Впрочем, энергия выбросов — джетов или струй блазаров, бьющих из центров чёрных дыр — настолько велика, что затмевает свет всех остальных звёзд в галактике-хозяйке. Тем не менее, приборы обсерватории NASA IXPE смогли различить спиралевидную структуру электромагнитного поля в месте движения ударной волны в струе блазара Маркарян 421 (Markarian 421) в созвездии Большой Медведицы.

Ранее обсерватория IXPE смогла увидеть признаки спиралевидной структуры в джете другого блазара — Маркарян 501. Двукратное наблюдение за блазаром Маркарян 421 позволило более детально изучить структуру поля и окончательно утвердиться в мысли, что частицы в джете разгоняются до околосветовых скоростей именно благодаря формированию фронта ударной волны, а фронт волны, в свою очередь, формируется в процессе вращения частиц по линиям электромагнитного поля по спирали.

 Обсерватория NASA IXPE

Обсерватория NASA IXPE

Интересно, что два наблюдения блазара Маркарян 421 с перерывом свыше полугода не показало изменения в поляризации рентгеновского излучения джета. При этом каждое из наблюдений показывало постоянную смену поляризации на 15 %. Оказалось, что между двумя наблюдениями поляризация поменялась на 180 градусов. Это стало сюрпризом, поскольку никто не ожидал таких крупных витков «спирали» в магнитном поле струи. И это открытие позволило упрочить фундамент под нашими знаниями о физике джетов и блазаров.

Учёные возродили гипотезу «старения света» — Вселенная может оказаться вдвое старше, чем считается

Учёные Оттавского университета (Канада), основываясь на данных космического телескопа «Джеймс Уэбб» (JWST), вернулись к выдвинутой почти сто лет назад гипотезе, согласно которой, возраст Вселенной может быть почти вдвое больше, чем считается сейчас.

 Источник изображения: uottawa.ca

Источник изображения: uottawa.ca

Современная наука склоняется к тому, что Большой взрыв произошёл 13,797 млрд лет назад — этот показатель был получен на основе анализа красного смещения, то есть «растягивании» электромагнитных волн из-за расширения Вселенной в четырёх измерениях. Но существуют некоторые аномалии, которые в эту гипотезу не укладываются, и их ещё предстоит объяснить. Одной из таких аномалий является «проблема невозможных ранних галактик» — обнаруженных «Джеймсом Уэббом» небольших галактик, которые, как считается, сформировались через 300 млн лет после Большого взрыва, но имеют несоответствующие этому возрасту характеристики. Ещё одна аномалия — звезда Мафусаил (HD 140283), возраст которой, по разным оценкам, составляет от 12 млрд до 14,46 млрд лет, то есть она каким-то образом может оказаться старше самой Вселенной.

Чтобы объяснить эти аномалии, ученые Оттавского университета вновь обратились к гипотезе «старения света», предложенной в 1929 году астрономом Фрицем Цвикки (Fritz Zwicky) в качестве альтернативы теории расширяющейся Вселенной. Основная идея этой опровергнутой впоследствии гипотезы состоит в том, что по мере движения через Вселенную свет теряет энергию из-за того, что фотоны сталкиваются с пылью, газом и проходят через силовые поля. Иными словами, Вселенная статична, а её расширение — это иллюзия.

Эта гипотеза никогда не устраивала физиков, которые указывали, что из-за «усталого света» звёзды и галактики должны казаться размытыми. Кроме того, она не объясняет асимметрию Вселенной, её тепловой спектр, а также фоновое излучение. Канадские учёные вернули гипотезу «старения света» в обновлённом виде с учётом уравнения Дирака, которое описывает взаимодействие частиц на квантовом уровне — новая модель указывает, что возраст наблюдаемой Вселенной может оказаться почти в два раза больше, чем считается сейчас — 26,7 млрд лет.

Открытые «Уэббом» древнейшие галактики на деле могут оказаться звёздами из тёмной материи — таких человечество ещё не видело

Первый год наблюдений космической обсерватории «Джеймс Уэбб» принёс множество открытий, включая обнаружение самых древних галактик, появившихся на самой заре нашей Вселенной, когда ей было всего 300 млн лет. Группа учёных поставила под сомнение это открытие, заявив, что эти объекты могут быть звёздами из тёмной материи — первыми, которые человечество увидело в свои инструменты.

 Источник изображения: Pixabay

Источник изображения: Pixabay

Наши знания о Вселенной очень и очень неполны. Значительную часть из них представляют теоретические модели. Наблюдения, особенно с помощью самого современного оборудования, позволяют подтвердить или опровергнуть ту или иную теорию. Космическая обсерватория им. Джеймса Уэбба стала таким инструментом, который позволил заглянуть в эпоху детства и юности Вселенной. Инфракрасные датчики «Уэбба» способны уловить свет, который летел к нам свыше 13 млрд лет, и поэтому ушёл в инфракрасный диапазон — длина волны банально растянулась во время этого эпического полёта и стала невидима в оптическом диапазоне.

Инструменты «Уэбба» обнаружили три объекта возрастом от 300 до 400 млн лет после Большого взрыва — это JADES-GS-z13-0, JADES-GS-z12-0 и JADES-GS-z11-0. Спектральный анализ излучения этих объектов показал, что им действительно столько лет, как на это указывает величина их красного смещения. Фактически, это одни из самых молодых галактик во Вселенной, масса которых находится в районе 100 млн солнечных масс. Однако учёные Космин Илие (Cosmin Ilie) и Джиллиан Паулин (Jillian Paulin) из Колгейтского университета и Кэтрин Фриз (Katherine Freese) из Техасского университета в Остине поставили под сомнение это открытие и опубликовали научную работу, в которой обосновали альтернативную версию идентификации этих объектов.

Согласно математическому моделированию учёных, все три открытых объекта — это звёзды из тёмной материи. Для гипотетических звёзд III-го населения (таковые пока не наблюдались) масса в 100 млн солнечных масс была бы нормой. Наука предполагает, что первые звёзды в нашей Вселенной должны отличаться от наблюдаемых нами звёзд, и в этом свете объекты JADES-GS-z13-0, JADES-GS-z12-0 и JADES-GS-z11-0 вполне могут оказаться звёздами, а не галактиками. Первыми звёздами.

Вещество этих звёзд также может отличаться от вещества в наблюдаемых звёздах. В нашей Вселенной мы видим в звёздах процесс термоядерной реакции, когда водород превращается в гелий. В первых звёздах веществом может быть тёмная материя. Вместо реакции синтеза такие звёзды горят в процессе реакции аннигиляции частиц и античастиц тёмного вещества. Теория это допускает, хотя мы пока не имеем понятия, что такое эта тёмная материя, кроме разве что почти полной уверенности, что это действительно частицы, а не поле, например.

К сожалению, чувствительности «Уэбба» не хватает, чтобы обнаружить линии гелия в столь отдалённых от нас по времени объектах. В таком случае мы могли бы точно узнать, идут ли в них термоядерные реакции или нет, и сказать, «тёмные» звёзды это или обычные молодые галактики. Остаётся надеяться на моделирование, которое, кстати, очень удачно может объяснить и появление сверхмассивных чёрных дыр (звезда в 100 млн масс Солнца может сразу коллапсировать в сверхмассивную чёрную дыру), и наличие неуловимого звёздного населения III, и присутствие тёмной материи и много чего ещё, на что официально признанная астрофизическая теория развития Вселенной пока не может дать убедительного ответа.

Видео: пролёт мимо 5000 галактик до «Мэйси» — древнейшей из известных галактик

Накануне первой годовщины первого научного обзора неба космической обсерваторией «Джеймс Уэбб» учёные представили трёхмерную визуализацию примерно 5000 галактик, наблюдения которых проведены с помощью этой космической обсерватории. Визуализация являет собой виртуальный полёт сквозь Вселенную до самой древней из обнаруженных галактик «Мэйси», которую до «Уэбба» не видел никто на Земле.

 Источник изображения: Pixabay

Источник изображения: Pixabay

В ролик попали галактики из области неба, названной Расширенная полоса Грота, которая находится между созвездиями Волопаса и Большой Медведицы. Телескоп «Хаббл» наблюдал этот регион около 20 лет назад и обнаружил там порядка 100 тыс. галактик. Можно было бы сказать, что «Уэбб» переоткрыл их, но это не совсем так. Самые дальние галактики на снимках «Хаббла» были просто точками, а «Уэбб» позволяет увидеть множество деталей на изображениях, за что надо благодарить его чувствительность к инфракрасному диапазону, а также новый телескоп провёл спектральный анализ света звёзд. Можно сказать, что «Хаббл» увидел лес, а «Уэбб» рассказал, что там растёт.

Более того, визуализация завершается изображением галактики «Мэйси» (CEERSJ141946.35+525632.8, Maisies). Эта галактика получила собственное имя от одной из учёных проекта, которая назвала её в честь своей дочери. Возможно это всё ещё кандидат в самые ранние галактики. Было ли подтверждено её красное смещение на уровне z14,3 или нет, мы точно сказать не можем. В пресс-релизе NASA её называют самой ранней галактикой, но научной работы с подтверждением этого в виде спектрального анализа, похоже, ещё не было.

Если «Мэйси» — это действительно то, чем она кажется, то на снимке «Уэбба» она находится во времена, когда Вселенной было всего 286 млн лет или 13,4 млрд лет назад. Это первая галактика, которую до работы «Уэбба» люди не видели.

«Эта обсерватория просто открывает для нас весь этот период времени для изучения, — сказала Ребекка Ларсон (Rebecca Larson) из Рочестерского технологического института в Рочестере (штат Нью-Йорк), одна из учёных проекта. — Раньше мы не могли изучать галактики, подобные галактике "Мэйси", потому что не могли их увидеть. Теперь же мы не только можем обнаружить их на снимках, но и узнать, из чего они состоят и отличаются ли они от галактик, которые мы видим вблизи».

Время на заре Вселенной текло в пять раз медленнее, чем сегодня, доказали учёные

Как удалось выяснить астрономам на основе наблюдений за изменениями в излучении порядка 190 квазаров, на начальном этапе формирования Вселенной время текло в пять раз медленнее, чем сегодня. С соответствующим заявлением выступила пресс-служба Сиднейского университета.

 Источник изображения: NASA

Источник изображения: NASA

Как сообщает ТАСС со ссылкой на пресс-службу университета, благодаря Эйнштейну известно, что время и пространство неразрывно связаны. При этом Вселенная постоянно расширяется и в теории это означает, что события в ранней Вселенной, в первый миллиард лет после Большого взрыва показались бы замедленными в сравнении с течением времени сегодня. Сообщается, что учёные 20 лет наблюдали за 190 квазарами (сверхмассивными чёрными дырами в центрах галактик), являющимися очень интенсивными источниками излучения. Из-за огромного расстояния до Солнечной системы, которое должно проделать излучение, они видны такими, какими выглядели в далёкой древности. Излучение, дошедшее до Земли, испущено 3–12 млрд лет назад. Известно, что наблюдения ведутся в рамках проектов Dark Energy Survey и Sloan Digital Sky Survey.

Ученые следили за искажением излучения квазаров. Источники были подобраны таким образом, что их светимость должна была изменяться примерно одинаково. Ученые определили частоту искажений для квазаров, расположенных на схожих расстояниях, и сравнили полученные данные между разными группами. В результате удалось выяснить, как медленно текло время в разные периоды существования Вселенной. В прошлом оно шло медленнее, но если 3 млрд лет назад — только в 1,2 раза, то 12 млрд лет назад — в пять раз.

Данные косвенно подтверждаются зарегистрированными близко и далеко от Земли вспышками сверхновых — здесь также отмечалось изменение скорости течения времени. Другими словами, квазары вполне подходят для измерения скорости течения времени. Впрочем, гипотетический наблюдатель, оказавшийся бы в относительной близости от квазара в древние времена, никакого замедления не заметил бы.

Известно, что ещё в XX веке учёные обнаружили, что Вселенная расширяется и делает это всё быстрее. Считается, что за это ответственна т.н. тёмная энергия. По данным исследований, рост Вселенной был неравномерным и если в самые первые мгновения после Большого взрыва её границы расширялись практически со скоростью света, то после рост стремительно замедлился и в первые 10 млрд лет темп сохранялся довольно низким. После скорость расширения Вселенной снова начала расти. Предполагается, что именно тёмная энергия усилила влияние на расширение структуры пространства. Известно, что буквально на днях SpaceX успешно запустила телескоп «Эвклид», предназначенный для изучения тёмной материи и тёмной энергии.

«Джеймс Уэбб» засёк зарождение космической паутины — это происходило через 830 млн лет после Большого взрыва

Расположение и перемещение галактик во Вселенной отнюдь не случайно. Помимо явных скоплений галактики связаны нитеподобными структурами. По всей видимости, в основе «нитей» лежит тёмная материя, которая постепенно собирала вокруг себя обычное вещество. Вначале это была слабая космическая паутина, но со временем она становилась всё более прочной и заметной. «Джеймс Уэбб» смог проследить начало формирования призрачных нитей, связывающих галактики в огромные структуры.

 Источник изображения: NASA, ESA, CSA

Кругами отмечены связанные космической нитью галактики, а объединяющий квазар находится в центре трёх кругов справа. Источник изображения: NASA, ESA, CSA

Центрами «сборки» космической паутины считаются сверхмассивные чёрные дыры или активные ядра галактик, которые также называют квазарами. Наблюдение за одним квазаром (J0305-3150) в ранней Вселенной в эпоху реионизации позволило выявить 10 связанных с ним галактик, соединённых космической «нитью» длиной 3 млн световых лет.

«Я был удивлен тем, насколько длинной и узкой является эта нить, — сказал участник исследования Сяохуи Фань (Xiaohui Fan) из Университета Аризоны в Тусоне. — Я ожидал найти что-то, но не ожидал такой длинной, отчётливо тонкой структуры». Руководитель проекта Фейдж Ванг (Feige Wang) из того же университета добавил: «Это одна из самых ранних связанная с далёким квазаром нитевидных структур, которые люди когда-либо находили».

Со временем эта нить превратится в громадное галактическое скопление, и оно где-то есть, а изучение космической паутины на ранних этапах даёт возможность проследить за эволюцией таких процессов.

Проделанная учёными работа входит в рамки проекта по изучению самых первых чёрных дыр. Всего в рамках программы ASPIRE (A SPectroscopic survey of biased halos In the Reionization Era) будут наблюдаться 25 квазаров, существовавших в течение первого миллиарда лет после Большого взрыва. Программа призвана решить множество загадок, связанных с эволюцией чёрных дыр и одна из них — это слишком быстрое их появление в виде сверхмассивных объектов, на что, в теории, в те времена не хватило бы и времени, и материи.

Учёные впервые «услышали» хор низкочастотных гравитационных волн, пронизывающих Вселенную

Группы учёных из Австралии, США, Европы, Китая и Индии независимо друг от друга опубликовали материалы об обнаружении признаков низкочастотных гравитационных волн — это ещё не совсем их открытие, но результаты наблюдений с высокой вероятностью свидетельствуют о том, что зафиксировано нечто значимое. Астрономам удалось «услышать» низкочастотные гравитационные волны — слабую рябь ткани Вселенной, вызванную движением сверхмассивных объектов, которые растягивают и сжимают пространство.

 Визуализация гравитационных волн, производимых сверхмассивными чёрными дырами. Источник изображения: nanograv.org

Визуализация гравитационных волн, производимых сверхмассивными чёрными дырами. Источник изображения: nanograv.org

Ещё Эйнштейн предсказал, что по мере своего движения в пространстве и времени сверхтяжёлые объекты создают рябь, которая проходит по ткани Вселенной — иногда эту рябь называют фоновой музыкой Вселенной. В 2015 году эксперимент LIGO помог обнаружить гравитационные волны и доказать правоту Эйнштейна, но до сих пор они фиксировались лишь на высоких частотах. То были отдельные быстрые «щебетания», которые происходят только в определённые моменты, например, когда друг с другом сталкиваются относительно небольшие чёрные дыры и мёртвые звезды.

В последнем исследовательском проекте учёные пытались обнаружить гравитационные волны на гораздо более низких наногерцовых частотах — периоды этой медленной ряби могут составлять годы и даже десятилетия. Исходит она, вероятно, из самых больших объектов Вселенной — сверхмассивных чёрных дыр массой в миллиарды солнечных. Но есть и другие «подозреваемые»: космические струны, фазовые изменения Вселенной, быстрое расширение пространства после Большого Взрыва. Возможно, и сам Большой Взрыв, но длина гравитационной волны от него была бы размером во Вселенную, и для неё потребовался бы детектор сравнимых масштабов.

Галактики во Вселенной постоянно сталкиваются и сливаются. Схожие процессы наблюдаются и у сверхмассивных чёрных дыр в ядрах галактик. Они сближаются, вращаются вокруг друг друга и в итоге тоже сливаются, испуская во время взаимодействия гравитационные волны. Если сравнить столкновение сверхмассивных чёрных дыр с брошенным в пруд камнем, то создаваемая им рябь на поверхности пруда — это низкочастотные гравитационные волны. Они расходятся одновременно во все стороны со скоростью света, сжимая и растягивая пространство и время. Зафиксировать эту рябь напрямую доступными человеку инструментами невозможно — длина такой наногерцовой волны может измеряться световыми годами. Проще говоря, Земля слишком мала, и понадобился бы детектор галактических масштабов. На их обнаружение непрямыми методами у учёных NANOGrav ушло 15 лет, и в своей работе они использовали оборудование, установленное по всей Северной Америке. Астрономы других стран опирались на результаты исследований, продолжавшихся до 18 лет.

 Обсерватория Very Large Array. Источник изображения: nrao.edu

Обсерватория Very Large Array. Источник изображения: nrao.edu

Мы живём в галактике, которая намного больше Земли, и в ней есть объекты, при помощи которых можно непрямыми методами зафиксировать признаки низкочастотных гравитационных волн. Это радиопульсары — мёртвые звёзды, которые при вращении испускают всплески электромагнитного излучения в радиочастотном диапазоне. Эти всплески отличаются строгой периодичностью как своего рода идеально точные часы, расположенные далеко в космосе. Но по мере того как гравитационные волны искажают ткань пространства и времени, они изменяют расстояние между Землёй и этими пульсарами, искажая тем самым этот чрезвычайно стабильный ритм. Одного мелкого сбоя в периодическом событии, конечно, недостаточно. Но если отслеживать множество пульсаров в течение долгого времени и отмечать связанные сбои в частоте радиовсплесков, действительно можно зафиксировать признаки низкочастотной гравитационной волны.

В рамках исследовательского проекта астрономы NANOGrav наблюдали за 68 пульсарами при помощи радиотелескопов «Грин-Бэнк» (США, Западная Вирджиния), «Аресибо» (Пуэрто-Рико) и Very Large Array (США, Нью-Мексико). Аналогичные свидетельства нашли другие команды учёных, следившие за другими пульсарами при помощи телескопов по всему миру. Всего было собрано материала по 115 пульсарам за 18 лет. Астрономия временных массивов пульсаров — долгосрочный проект, но учёные уже максимально близки к подтверждению открытия. Исследователи объединили данные своих наблюдений — окончательный результат должен быть получен в течение года или двух.

К сожалению, этот метод не позволяет отследить, откуда именно исходят те или иные низкочастотные гравитационные волны — он просто раскрывает постоянный гул, окружающий нас. Аналогичным образом человек на шумной вечеринке слышит, что множество людей разговаривает, но не может расслышать ничего конкретного.

Уже сейчас есть причины утверждать, что обнаруженный учёными фоновый шум низкочастотных гравитационных волн оказался «громче», чем ожидалось. Это может означать, что слияния чёрных дыр происходят чаще, чем считалось, или наше представление о природе Вселенной не вполне соответствует действительности. Исследователи надеются, что открытие поможет нам узнать больше о сверхмассивных объектах Вселенной, открыть новые двери «космической археологии» и отследить историю слияния чёрных дыр и галактик вокруг нас.

«Джеймс Уэбб» пробился сквозь сияние древних квазаров и увидел свет одних из первых звёзд Вселенной

Группа астрономов сообщила о первом в мире наблюдении света звёзд из очень ранних активных галактик (квазаров). «Джеймс Уэбб» смог увидеть звёздное население в свете квазаров на удалении 12,9 и 12,8 миллиардов лет или во времена всего лишь через 870 и 880 млн лет после Большого взрыва. Так далеко и с такой разрешающей способностью земная наука ещё не заглядывала. Открытие поможет понять эволюцию звёзд, галактик и сверхмассивных чёрных дыр в их центрах.

 Квазар HSC J2236+0032 в поле зрения космического телескопа «Джеймс Уебб». Источник изображения:

Квазар HSC J2236+0032 в поле зрения космического телескопа «Джеймс Уэбб». Источник изображения: Ding, Onoue, Silverman, et al.

Космический телескоп «Хаббл» помог учёным увидеть звёзды в активных галактиках на расстоянии 10 млрд световых лет. «Уэбб» заглянул ещё дальше — почти на 13 млрд лет или в эпоху, когда первые звёзды образовывали первые галактики. До этого наука смогла составить представление об эволюции квазаров и их галактик-хозяек в зрелые годы Вселенной вплоть до нашего времени. Но что было в ранние эпохи развития Вселенной оставалось нам неизвестным.

Следует сказать, что в исследованной нами Вселенной масса квазаров коррелирует с массой галактик, в которых они находятся (квазар — это активно питающаяся сверхмассивная чёрная дыра в центре галактики или, иначе, её активное ядро). Тем самым существует примерная зависимость массы квазаров от массы галактик. Учёные не могут со 100-процентной уверенностью ответить, почему так происходит. На этот счёт существует две основные гипотезы: либо излучение квазара влияет на активность звездообразования в галактиках-хозяйках, либо чёрные дыры растут пропорционально росту галактик в цепочке последовательных слияний более мелких галактик и чёрных дыр из их центров.

Наблюдения «Уэбба» дают ценный материал для изучения эволюции галактик и квазаров на ранних этапах, что может подтвердить ту или иную гипотезу и для этого необходимо уметь отделять свет звёзд в галактиках от света квазаров в их центрах, который затмевает всё остальное излучение рядом с собой. Ведь узнать о массе далёкой галактики мы можем, только анализируя свет от её звёздного населения. «Уэбб» предоставил такую возможность для объектов на невообразимом удалении.

Два квазара из ранней Вселенной — J2236+0032 и J2255+0251 — оказались с тем же соотношением масс чёрных дыр к массам их галактик, как и в нашей области Вселенной. Галактики, в центрах которых они обитали на тот момент времени, обладали массой в 130 млрд и 30 млрд раз больше солнечной, а массы их центральных чёрных дыр были в 1,4 млрд и 200 млн раз больше массы Солнца.

Безусловно, двух наблюдений недостаточно для создания стройной теории, поэтому «Джеймс Уэбб» продолжит изучение квазаров в ранней Вселенной и такие программы уже намечены и выполняются.

Важная для зарождения жизни молекула впервые обнаружена за пределами Земли — её искали более 50 лет

Международная группа учёных сообщила о знаковом открытии — в космосе впервые найдена особая молекула углерода, которая важна для зарождения биологической жизни. Молекула обнаружена в протопланетном диске молодой звезды на удалении 1350 световых лет от нас. Но это не единственная странность в этой звёздной системе, а для движения науки вперёд, чем больше лежит на пути загадок, тем лучше!

 Нажмите, чтобы увеличить. Источник изображения: ESA/Webb, NASA, CSA

Нажмите, чтобы увеличить. Источник изображения: ESA/Webb, NASA, CSA

Анализ спектральных данных, собранных обсерваторией «Джеймс Уэбб», обнаружил невиданные ранее линии спектра. В течение четырёх недель занятые в работе учёные смогли идентифицировать сигналы до определения источника — молекулы метил-катиона (CH3+). Это стало первым подтверждённым обнаружением данного соединения за пределами Земли.

Ещё в 70-х годах прошлого века появилась теория, что для зарождения биологической жизни на Земле и в космосе важным этапом должно стать образование такого соединения углерода, как метил-катион. Это своего рода катализатор или посредник для запуска множества химических реакций, которые в итоге могут привести к образованию соединений, породивших органическую химию. Чтобы подтвердить эту гипотезу метил-катион должен обнаруживаться в космосе, но радиотелескопы не способны его уловить из-за особенностей строения молекулы, а инфракрасные телескопы с Земли банально не работают.

Прорыв произошёл благодаря инфракрасной космической обсерватории «Джеймс Уэбб» с её революционной спектральной и инфракрасной чувствительностью, а также высочайшим на сегодня пространственным разрешением.

Молекула метил-катиона обнаружена в протопланетном диске небольшого красного карлика d203-506 в туманности Ориона. Особенность данного объекта в том, что протопланетный диск подвергается сильной бомбардировке ультрафиолетом от близлежащих молодых и более массивных звёзд. Сам красный карлик на такое не способен. Ультрафиолет, как ни странно для нас это звучит, не разрушает метил-катион, а даёт энергию для запуска процесса его синтеза. Такое, вероятно, происходит на ранних стадиях зарождения органической химии и не вредит ей, а даёт толчок к развитию.

Обнаружение метил-катиона в протопланетном диске d203-506 оказалось не единственной странностью. Так, в системе вообще не выявлено наличие молекул воды, хотя обычно её следы есть везде. На этот счёт учёные предполагают, что в этом снова виновато сильное ультрафиолетовое излучение на определённом этапе развития протопланетных дисков. В любом случае исследователи получили больше информации для прослеживания ранних этапов развития органической химии и зарождения жизни на Земле и в космосе, что рано или поздно ляжет в основу стройной теории и будет подтверждено новыми наблюдениями.

В июле в космос запустят телескоп «Евклид» для поиска следов тёмной материи и энергии

Европейское космическое агентство сообщило, что космическая обсерватория «Евклид» (Euclid) проходит этап заправки топливом перед запуском в космос. Заправка осуществляется на предприятии Astrotech во Флориде недалеко от места будущего старта. Обсерватория будет запущена на ракете SpaceX Falcon 9, хотя первоначально она должна была лететь на «Союзе». Целью «Евклида» станет поиск следов тёмной материи и энергии во Вселенной.

 Источник изображения: ESA

Источник изображения: ESA

«Евклид» — это европейский проект. Обсерватория будет выведена в точку Лагранжа L2 на удалении 1,5 млн км от Земли, где уже работает обсерватория «Джеймс Уэбб». «Евклид» будет смотреть на небо как в видимом диапазоне, так и в ближнем инфракрасном, поэтому чем дальше он от Солнца, тем лучше будет его работа. Научная программа обсерватории рассчитана на шесть лет. Но её продолжительность будет зависеть, в том числе, от расхода топлива.

Для доставки обсерватории в точку базировании, ежемесячной коррекции положения в пространстве и для последующей утилизации обсерватория будет заправлена 140 кг гидразина. Это топливо будет питать десять двигателей обсерватории, и будет храниться в одном баке. За стабилизацию телескопа в процессе съёмки будут отвечать шесть импульсных газовых двигателей на азоте. На борту «Евклида» четыре бака для азота под высоким давлением, которые вмещают 70 кг газа.

Непосредственной работой обсерватории «Евклид» станет съёмка галактик на удалении до 10 млрд световых лет. Обсерватория охватит участок до 30 % неба, на котором отметит миллиарды галактик на всю глубину наблюдения до этапа юности Вселенной и определит их красное смещение. Эти данные позволят с высочайшей точностью вычислить параметры поведения как тёмной материи, так и тёмной энергии. Телескоп не сможет напрямую увидеть эти объекты и явления, но их воздействие на Вселенную он определит с предельно возможной для современной науки точностью.

По поведению галактик во времени можно будет узнать, как росло ускорение их разлёта — это путь для уточнения свойств тёмной энергии, а трансформация галактик во времени даст характеристики для вычисления свойств тёмной материи. Тем самым «Евклид» предоставит информацию для лучшего моделирования поведения «тёмной» стороны Вселенной. Дождёмся запуска, до которого остались считанные дни — запланирован он на июль 2023 года, но точной даты пока нет.

Обнаружена самая быстрая звезда Млечного пути — она движется на скорости в четыре раз выше галактической

Около 20 лет назад в нашей галактике впервые была обнаружена одна из так называемых «убегающих» звёзд, скорость которых превышает галактическое притяжение. Это заставит такие звёзды рано или поздно покинуть галактику. Впоследствии астрономы обнаружили ещё несколько таких звёзд и продолжают находить новые. Среди четырёх новых открытий найдены два рекордсмена и один абсолютный чемпион, который движется на скорости в четыре раз выше галактической.

 Источник изображения: Pixabay

Источник изображения: Pixabay

Сегодня доминирует теория, что убегающие звёзды возникают после термоядерного взрыва белого карлика — это класс сверхновых Ia. Обычные сверхновые возникают после коллапса более массивных звёзд на закате их эволюции, тогда как сверхновые типа Ia появляются после накопления белым карликом критической массы.

Эту массу белый карлик ворует у звезды-партнёра по двойной системе. Если это лёгкий водород, то термоядерный взрыв происходит как обычно, но если вторая звезда по системе такой же белый карлик, то от него можно получить в основном более тяжёлый гелий и тогда происходит двойной термоядерный взрыв. Сначала термоядерная реакция возникает в оболочке, а затем происходит вторичная детонация ядра звезды. Это процесс называется Dynamically Driven Double-Degenerate Double-Detonation или D6.

«Убегающие» звёзды, как считается, появляются в результате двойной детонации белых карликов. Двойной термоядерный взрыв придаёт второй звезде в паре достаточное ускорение, чтобы та в итоге вышла за пределы галактики. Предполагалось, что в нашей галактике Млечный путь около 1000 таких звёзд. Часть из них могли приблудиться из других галактик, благо их скорости это позволяют. Но точно определить количество летящих в межзвёздном пространстве блуждающих звёзд было сложно.

Свежие данные европейского астрометрического спутника «Гайя» (Gaia) позволили обнаружить четыре новых гиперскоростных звезды, две из которых оказались рекордсменами. Это J1235, движущаяся на относительной скорости 1694 км/с, и J0927 — летящая относительно Солнца на огромной скорости 2285 км/с.

Новое открытие с учётом ранее обнаруженных звёзд-беглецов в количестве 10 штук, позволило уточнить модель появления таких объектов и ещё прочнее связать их со сверхновыми типа Ia, что, в свою очередь, позволило по-новому рассчитать скорость рождения таких звезд. Скорость их появления оказалась хорошо согласованной со скоростью рождения сверхновых типа Ia. Поскольку сверхновые этого типа хорошо видны в телескопы и, более того, они являются «стандартными маяками» для определения расстояний в галактике, можно рассчитать, сколько всего в нашей галактике носится звёзд с безумной скоростью.

Расчёты показывают, что таких звёзд может быть миллионы, просто значительная часть из них — это слабосветящиеся объекты, и они пока не обнаружены. На этом фоне возникают опасения, что одна из таких пока необнаруженных звёзд может внезапно оказаться на пути Солнечной системы с весьма неприятными последствиями для Земли и нас с вами.

«Если значительная часть сверхновых типа Ia порождает звезду D6, то галактика [Млечный Путь], вероятно, запустила в межгалактическое пространство более 10 млн таких звезд, — пишут исследователи. — Интересным следствием этого является то, что должно существовать большое количество слабых, близких [к нам] звезд D6, запущенных из галактик по всему объёму пространства включая тот, в который входит Солнечная система».

Исследование было представлено в журнале Open Journal of Astrophysics и доступно на сайте arXiv.

«Джеймс Уээб» сфотографировал древние галактики в пузырях

После Большого взрыва газ в родившейся Вселенной был настолько горячий и плотный, что поглощал едва ли не все электромагнитные излучения. Тёмные века закончились с появлением первых звёзд, свет которых запустил повторную ионизацию газа в пространстве, что в итоге сделало Вселенную прозрачной для всех диапазонов наблюдения. Но это всё в теории. Как обстояли дела на практике, учёные могли только догадываться. Но «Джеймс Уэбб» изменил правила игры.

 Источник изображения: NASA, ESA, CSA

Галактики из ранней Вселенной, окружённые «пузырями» из прозрачного газа. Источник изображения: NASA, ESA, CSA

Высокий уровень чувствительности в инфракрасном диапазоне помог космической обсерватории «Джеймс Уэбб» заглянуть так далеко в раннюю Вселенную, как никогда раньше. Выбранное астрономами время наблюдения лежало на рубеже 900 млн лет после Большого взрыва. Это фактически на границе завершения эпохи реионизации, что позволяло увидеть картину распределения прозрачности газа в большом масштабе.

Для нас как для наблюдателей в это время вокруг галактик образовывалось что-то в виде огромных пузырей прозрачного газа. «Пузыри» были уже достаточно большими, чтобы увидеть их границы, и они ещё не начали сливаться друг с другом у соседних галактик. Это произойдёт намного позже — через сотни миллионов лет, и тогда Вселенная станет практически прозрачная для наблюдения во всех направлениях.

До наблюдений «Уэбба» эти пузыри эпохи реионизации никто воочию не наблюдал, но чтобы их обнаружить потребовались наблюдения целого ряда других телескопов. Более того, просто так «пузыри» были бы невидны. Потребовалось в некотором роде везение. Там далеко в ранней Вселенной ещё до появления искомых галактик обнаружился квазар. Кстати, «Уэбб» подтвердил, что это самый яркий квазар из обнаруженных в ранней Вселенной — масса чёрной дыры в центре этой активной галактики в 10 млрд раз превышает массу Солнца. Этот квазар как фонарик подсветил все галактики от него до нас, высветив прозрачные пузыри и снизив интенсивность свечения в непрозрачных областях.

 Пример эволюции (реоинизации) газа под воздействием активной «жизнедеятельности» галактик в ранней Вселенной

Пример эволюции (реионизации) газа под воздействием активной «жизнедеятельности» галактик в ранней Вселенной

Картина получилась настолько интересной, что проводившие наблюдения астрономы поспешили опубликовать данные до полного разбора всей информации. В направлении квазара «Уэбб» сделал шесть снимков глубокого поля и сразу выхватил 117 галактик, разгоняющих «вселенский туман». Представленные сегодня данные опираются на анализ только одного снимка, а пять ещё в обработке. Но даже первый результат не позволил учёным сдержать себя, ведь такого ещё никто не видел.

window-new
Soft
Hard
Тренды 🔥
Самые полные издания Borderlands 3 и Diablo III добавят в Game Pass, а лучшая игра 2024 года по версии 3DNews подписку скоро покинет 8 ч.
«Эпический» сериал Netflix по Assassin’s Creed впервые за несколько лет подал признаки жизни 9 ч.
Спустя 10 лет после релиза Enter the Gungeon получит «крупнокалиберный сиквел» — первый трейлер и подробности Enter the Gungeon 2 11 ч.
Роскомнадзор порекомендовал отказаться от использования решения Cloudflare, нарушающего законы РФ 11 ч.
«Наш контент бесплатный, а инфраструктура — нет»: ИИ-боты разоряют «Википедию» 12 ч.
Nintendo поднимет цены на игры раньше Take-Two с GTA VI — Mario Kart World для Switch 2 будет стоить $80 в «цифре» и $90 в рознице 12 ч.
Роскомнадзор наделил себя правом собирать IP-адреса россиян 13 ч.
«Торт не был ложью!»: Nintendo подтвердила релиз Hollow Knight: Silksong в 2025 году и показала 5 секунд геймплея 13 ч.
Adobe придумала монтаж без пересъёмок: Premiere Pro 25.2 получил ИИ, который добавит ролику недостающие кадры 13 ч.
FromSoftware анонсировала мультиплеерный боевик The Duskbloods, который выглядит как смесь Elden Ring и Bloodborne — это эксклюзив Nintendo Switch 2 14 ч.