реклама
Теги → нейросеть
Быстрый переход

NVIDIA наделила эмоциями неигровых персонажей в играх с помощью ИИ

На выставке Computex 2023 компания NVIDIA представила платформу Avatar Cloud Engine (ACE) for Games, которая позволит сделать умнее неигровых персонажей (NPC) в играх. Представленный инструмент даёт возможность разработчикам создавать собственные ИИ-модели, которые позволят генерировать для NPC естественную речь, диалоги, а также движения. За минувшие месяцы с момента анонса платформы NVIDIA её усовершенствовала, научив создавать эмоциональных персонажей.

 Источник изображения: NVIDIA

Источник изображения: NVIDIA

В рамках изначальной демонстрации работы технологии ACE компания показала интерактивную демо-сцену Kairos с неигровым персонажем Джином, владельцем лапшичной, созданную на движке Unreal Engine 5 с технологией трассировки лучей. Сегодня NVIDIA отчиталась, что интегрировала в платформу ACE ИИ-модель NVIDIA NeMo SteerLM. Она позволяет разработчикам игр изменять характер неигровых персонажей, делая их более эмоциональными и реалистичными, что позволяет человеку сильнее погрузиться в мир игры.

Большинство языковых моделей (LLM) разработаны с целью давать только нейтральные ответы. Они лишены возможности эмоциональных имитаций и личностных поведенческих особенностей. Типичным примером таких LLM являются ИИ-чат-боты. В свою очередь с помощью SteerLM языковые модели обучаются давать ответы, соответствующие определённым атрибутам характера, от юмора до креативности и токсичности. При этом все особенности характера NPC можно настроить всего лишь движением нескольких ползунков в интерфейсе SteerLM. С примером использования SteerLM и результатами работы можно ознакомиться на видео ниже, в рамках всё той же интерактивной демо-сцены NVIDIA Kairos.

Как можно заметить, ответы NPC значительно отличаются, в зависимости от выбранных атрибутов характера и уровня интенсивности. Неигровой персонаж может обидеться на реплику игрока, попытаться более подробно объяснить ситуацию, а также сделать это с юмором и креативностью. При использовании NVIDIA NeMo SteerLM можно изменять существующие черты характера, а также добавлять новые, создавая по-настоящему уникальных неигровых интерактивных персонажей под определённую сцену в игре или локацию.

Эмоциональный отклик — не единственный вариант использования SteerLM в играх. С помощью этой технологии разработчики могут создавать сразу несколько персонажей, используя одну LLM. Кроме того, разработчики могут создавать так называемые атрибуты фракций, чтобы согласовать реакции тех или иных NPC с развитием внутриигровой истории, позволяя неигровым персонажам динамически изменяться в характере с учётом изменяющихся событий в игре.

В приведенной выше демо-сцене для озвучивания неигрового персонажа Джина использовался синтезатор текста в речь ElevenLabs. С помощью ACE разработчики могут добавлять свои собственные компоненты в конвейер ACE, расширяя его возможности.

Эффект от внедрения ИИ в России превысит 1 трлн рублей к 2025 году, уверены в правительстве

Вице-премьер России Дмитрий Чернышенко заявил на пленарной сессии по ИИ в рамках международного военно-технического форума «Армия-2023», что только от снижения операционных расходов российских организаций благодаря внедрению ИИ экономический эффект по итогам года составит ₽400 млрд, а к 2025 г. превысит ₽1 трлн. Он также отметил рост рынка ИИ на 18 % до ₽650 млрд по итогам 2022 г.

 Источник изображения: rusarmyexpo.ru

Источник изображения: rusarmyexpo.ru

Чернышенко сообщил, что сейчас «на фоне вызовов, стоящих перед отраслью, и высокого потенциала применения технологий ведётся работа по актуализации национальной стратегии развития искусственного интеллекта на период до 2030 года». Проект обновлённого документа должен в сентябре рассмотреть премьер Михаил Мишустин, а в ноябре проект оценит президент России Владимир Путин.

Дмитрий Чернышенко также проинформировал участников сессии, что «по поручению президента разрабатывается нацпроект “Экономика данных” – в рамках него будет обеспечена реализация обновлённой стратегии».

В рамках научно-технологической кооперации в военной сфере Чернышенко поручил включить представителей Минобороны в состав штаба по ИИ, обеспечить информирование экспертов военного ведомства о существующих в России разработках в области ИИ, а также назначить дополнительную экспертизу решениям в области информационных технологий.

По данным Чернышенко, правительство с 2021 года осуществляет финансирование и поддержку шести ведущих исследовательских центров в области ИИ, которые тесно сотрудничают с 26 индустриальными партнёрами. Власти планируют отобрать ещё шесть ИИ-лабораторий, которые получат господдержку в 2024–2026 годах. В следующем году планируется запуск реестра типовых ИИ-решений.

Также вице-премьер проинформировал участников форума о начавшемся переходе государственных информационных систем на платформу «Гостех», в которой будут храниться обезличенные наборы данных корпоративных и государственных структур.

Нейросеть YandexGPT научилась выделять главное из отзывов на товары

Поисковая система «Яндекса» подскажет пользователям, на что именно обратить внимание при выборе того или иного товара, а также за что именно заинтересовавшие их продукты хвалят и ругают чаще всего. Для этого нейросеть YandexGPT обобщит данные из отзывов покупателей и сформирует краткий список плюсов и минусов. Сформированные нейросетью обобщённые отзывы также будут доступны в «Яндекс.Маркете».

 Источник изображений: «Яндекс»

Источник изображений: «Яндекс»

Пользователи смогут оценить подобранные нейросетью данные, а также сообщить о случаях, когда алгоритм предоставляет некорректную информацию. В поисковике компании такой список плюсов и минусов отображается, если пользователь вводит запрос с указанием конкретной модели. Кликнув на каждое преимущество или недостаток товара можно увидеть конкретный пользовательский отзыв, где упоминается эта особенность.

Нейросеть YandexGPT осуществляет анализ отзывов, которые покупатели оставляют в «Яндекс.Маркете» и в разделе «Мои отзывы» в самом поисковике. Алгоритм отбирает наиболее качественные и подробные отзывы, соответствующие многочисленным критериям. После этого нейросеть отмечает особенности товара, которые по мнению пользователей являются важными и о которых заходит речь чаще всего. Для создания списка достоинств и недостатков товара нейросеть использует не менее 10 качественных отзывов. В дальнейшем YandexGPT придёт на смену запущенной в 2021 году технологии создания отзывов в «Яндекс.Маркете».

Напомним, «Яндекс.Маркет» представляет собой сервис для покупок, на котором пользователи могут найти свыше 53 млн товаров, начиная от смартфонов и заканчивая детскими игрушками. Для реализации своих товаров сервис используют около 62 тыс. магазинов-партнёров. Помимо веб-версии сервиса пользователи могут использовать мобильные приложения для Android и iOS для взаимодействия с «Яндекс.Маркетом».

В Tinkoff Research придумали, как ускорить обучение искусственного интеллекта в 20 раз

Учёные из лаборатории исследований искусственного интеллекта Tinkoff Research разработали SAC-RND — новый алгоритм для обучения ИИ. На робототехнических симуляторах было достигнуто повышение скорости обучения в 20 раз по сравнению со всеми существующими аналогами при возросшем на 10 % качестве. Оптимизация крайне ресурсоёмкого процесса обучения ИИ ускорит развитие многих сфер, где применяется ИИ.

 Источник изображения: Tinkoff

Источник изображения: Tinkoff

Разработчики утверждают, что SAC-RND может «повысить безопасность беспилотных автомобилей, упростить логистические цепочки, ускорить доставку и работу складов, оптимизировать процессы горения на энергетических объектах и сократить выбросы вредных веществ в окружающую среду. Открытие не только улучшает работу узкоспециализированных роботов, но и приближает нас к созданию универсального робота, способного в одиночку выполнять любые задачи».

Результаты исследования были представлены в конце июня на 40-й Международной конференции по машинному обучению (ICML) в Гонолулу, Гавайи. Эта конференция является одной из трёх крупнейших в мире в сфере машинного обучения и искусственного интеллекта.

Одним из наиболее перспективных видов обучения ИИ является обучение с подкреплением (RL), позволяющее ИИ учиться методом проб и ошибок, адаптироваться в сложных средах и изменять поведение на ходу. Обучение с подкреплением может использоваться во всех сферах: от регулирования пробок на дорогах до рекомендаций в социальных сетях.

При этом ранее считалось, что использование случайных нейросетей (RND) не применимо для офлайн-обучения с подкреплением. В методе RND используются две нейросети — случайная и основная, которая пытается предсказать поведение первой. Свойство нейросети определяются её глубиной — количеством слоёв, из которых она состоит. Основная сеть должна содержать больше слоёв, чем случайная, иначе моделирование и обучение становится нестабильным или даже невозможным.

Использование неправильных размеров сетей привело к ошибочному выводу, что метод RND не умеет дискриминировать данные — отличать действия из датасета от прочих. Исследователи из Tinkoff Research обнаружили, что при использовании эквивалентной глубины сетей, метод RND начинает качественно различать данные. Затем исследователи приступили к оптимизации ввода и научили роботов приходить к эффективным решениям при помощи механизма слияния, основанного на модуляции сигналов и их линейном отображении. До этого при использовании метода RND поступающие сигналы не подвергались дополнительной обработке.

На визуализации ниже в верхнем ряду показаны предыдущие попытки применения метода RND, в нижнем — метод SAC-RND. Стрелки на изображении должны вести робота в одну точку — они указывают направление к правильному действию. Метод Tinkoff Research во всех случаях стабильно приводит робота в нужную точку

 Визуализация принятия решения роботами, обученными с помощью разных алгоритмов. Источник изображения: Tinkoff Research

Визуализация принятия решения роботами, обученными с помощью разных алгоритмов. Источник изображения: Tinkoff Research

Метод SAC-RND был протестирован на робототехнических симуляторах и показал лучшие результаты при меньшем количестве потребляемых ресурсов и времени. Открытие поможет ускорить исследования в области робототехники и обучения с подкреплением, поскольку оно снижает время получения устойчивого результата в 20 раз и является важным шагом на пути к созданию универсального робота.

Tinkoff Research — российская исследовательская некоммерческая группа. Учёные из Tinkoff Research исследуют наиболее перспективные области ИИ: обработку естественного языка (NLP), компьютерное зрение (CV), обучение с подкреплением (RL) и рекомендательные системы (RecSys). Команда курирует исследовательскую лабораторию «Тинькофф» на базе МФТИ и помогает талантливым студентам совершать научные открытия.

Stability AI выпустил ИИ-генератор изображений Stable Diffusion XL 1.0, который может работать на более «простом» вычислительном оборудовании

ИИ-стартап Stability AI выпустил новую версию своей флагманской модели преобразования текста в изображение Stable Diffusion XL 1.0 (SDXL 1.0) с открытым исходным кодом, которую он позиционирует как свою «самую продвинутую» модель на сегодняшний день.

 Источник изображения: Pixabay

Источник изображения: Pixabay

По словам Stability, SDXL 1.0, доступная на GitHub в дополнение к API Stability и потребительским приложениям Clipdrop и DreamStudio, обеспечивает «более яркие» и «точные» цвета и лучшую контрастность, тени и освещение по сравнению с предыдущей версией.

Джо Пенна (Joe Penna), руководитель отдела прикладного машинного обучения Stability AI, сообщил в интервью TechCrunch, что SDXL 1.0, содержащая 3,5 млрд параметров, может выдавать изображения с разрешением 1 мегапиксель «за секунды» с различными соотношениями сторон.

Модель предыдущего поколения Stable Diffusion XL 0.9 также могла создавать изображения с высоким разрешением, но для её запуска требовалось больше вычислительной мощности. Как отметил ресурс SiliconANGLE, открытый исходный код наряду с возможностью работать на относительно простом оборудовании делают SDXL 1.0 гораздо более доступной, чем конкурирующие модели создания изображений.

«SDXL 1.0 — кастомизируемая и готова к тонкой настройке в соответствии с концепциями и стилями, — рассказал Пенна. — Она также проста в использовании, обладает способностью создавать сложные проекты с базовыми запросами на обработку естественного языка».

Кроме того, SDXL 1.0 получила улучшения в области генерации текста. В то время как даже у многих лучших моделей преобразования текста в изображение наблюдаются проблемы с генерацией изображения с разборчивыми логотипами, не говоря уже о каллиграфии или шрифтах, SDXL 1.0 способна на «продвинутое» генерирование текста и обеспечение его разборчивости, говорит Пенна.

SDXL 1.0 имеет функции inpainting, позволяющую восстанавливать недостающие части изображения, outpainting (расширение существующих изображений) и подсказки «изображение-к-изображению», позволяющую после ввода изображения добавлять несколько текстовых подсказок для создания более подробных вариантов этого изображения. Кроме того, модель «понимает» сложные инструкции, состоящие из нескольких частей, которые даются в коротких подсказках, тогда как в предыдущих моделях Stable Diffusion требовались более длинные текстовые подсказки.

Тренировочный набор SDXL 1.0 также включает в себя работы художников, протестовавших против использования компаниями, включая Stability AI, их работ в качестве обучающих данных для генеративных моделей ИИ. Stability AI утверждает, что она защищена от юридической ответственности доктриной добросовестного использования, по крайней мере, в США. Хотя это не помешало Getty Images подать в суд на Stability AI с обвинением в незаконном использовании изображений сервиса для обучения своей генеративной нейросети.

«Сбер» выложил в открытый доступ русскоязычную ИИ-модель ruGPT-3.5

Инженеры «Сбера» выложили в открытый доступ нейросетевую модель ruGPT-3.5, лежащую в основе сервиса GigaChat, который до сих пор проходит стадию закрытого тестирования. Лицензия MIT позволяет использовать материалы проекта в коммерческих целях.

 Структура датасета ruGPT-3.5. Источник изображения: habr.com

Структура датасета ruGPT-3.5. Источник изображения: habr.com

Важнейшим недостатком открытых больших языковых моделей вроде Meta LlaMA является ограниченная поддержка русского языка — обычно это русский раздел «Википедии» и некоторое количество общедоступных текстов. Это оказывает негативное влияние на понимание моделью языка и качество её ответов. Модель ruGPT-3.5, основанная на архитектуре OpenAI GPT-3, создана в первую очередь для работы в русскоязычной среде, поэтому она более качественно обрабатывает такие запросы.

Обучение модели производилось в два этапа. Первый этап продлился 1,5 месяца — за это время платформа обработала 300 Гбайт данных: книги, энциклопедийные и научные статьи, социальные ресурсы и другие источники. Потребовались ресурсы 512 ускорителей NVIDIA V100. На втором этапе проводилось дообучение на 110 Гбайт данных из датасета The Stack, юридических документов и обновлённых текстов «Википедии» — это заняло три недели и потребовало 200 ускорителей NVIDIA A100.

В результате у ruGPT-3.5 13 млрд параметров при длине контекста 2048 токенов — для сравнения, привели пример разработчики, рассказ А. П. Чехова «Хамелеон» разбивается на 1650 токенов при его длине в 901 слово.

Google разрабатывает ИИ-алгоритм Genesis для написания новостных статей, но о замене журналистов речи не идёт

По сообщениям сетевых источников, компания Google работает над созданием ИИ-алгоритма для написания новостных статей. Он разрабатывается под кодовым названием Genesis и уже был продемонстрирован руководству некоторых крупных изданий, таких как The New York Times, The Washington Post и The Wall Street Journal.

 Источник изображения: StartupStockPhotos / Pixabay

Источник изображения: StartupStockPhotos / Pixabay

По данным источников, Genesis может генерировать новостные статьи на основе данных о тех или иных событиях. В компании считают, что алгоритм может стать своеобразным помощником для журналистов. С его помощью можно не только генерировать готовые статьи, но и, например, подобрать оптимальный заголовок или изменить стиль материала.

«В партнёрстве с издателями новостей, особенно с небольшими издательствами, мы находимся на ранней стадии изучения идей, которые потенциально могут привести к созданию ИИ-инструментов для помощи в работе журналистов. Например, инструменты на базе ИИ могут помочь журналистам с выбором заголовка или стилем написания», — рассказал представитель Google. Он также добавил, что цель компании заключается в том, чтобы предоставить журналистам ИИ-инструменты для повышения эффективности их работы. Особо отмечается, что Google не стремится заменить журналистов ИИ-алгоритмами.

На данный момент трудно судить, насколько хорошо Genesis справляется с поставленными задачами. Очевидно, больше информации об этом алгоритме станет известно по мере развития проекта.

«Сбер» научил нейросеть Kandinsky генерировать стикеры и фотореалистичные изображения и портреты

«Сбер» представил новую версию своей нейросети для генерации изображений по текстовому описанию — Kandinsky 2.2, которая позволит создавать фотореалистичные изображения с более высоким разрешением и изменять соотношение сторон при генерации, а также обеспечит значительный прирост качества при создании портретов.

 Генерация Kandinsky 2.2           Источник изображений: «Сбер»

Генерация Kandinsky 2.2. Источник изображений: «Сбер»

Для дообучения Kandinsky 2.2 использовался набор данных из 1,5 млрд пар «текст — изображение», что на 300 млн больше, чем для предыдущей версии — Kandinsky 2.1, вышедшей в апреле этого года и набравшей всего за 6 дней 2 млн пользователей.

Новую версию модели научили создавать стикеры, из которых можно собирать полноценные стикерпаки в Telegram. Также благодаря внедрению специального структурного блока управляемых изменений ControlNetона она получила способность изменять по текстовому описанию отдельные объекты или элементы на изображениях, сохраняя при этом композицию исходной иллюстрации.

 Генерация Kandinsky 2.2

Генерация Kandinsky 2.2

Согласно пресс-релизу, Kandinsky 2.2 понимает запросы на русском и английском языках, обладает способностью рисовать более чем в 20 стилях, смешивать несколько рисунков, стилизовать изображение по текстовому описанию, генерировать изображения, похожие на заданные, а также дорисовывать недостающие части картинки (inpainting) и создавать картины в режиме бесконечного полотна (outpainting).

 Стикерпак от Kandinsky 2.2

Стикерпак от Kandinsky 2.2

«Нейросеть уже не просто пытается подражать творчеству человека, а способна создавать новые художественные смыслы и интерпретации», — сообщил первый зампред правления Сбербанка Александр Ведяхин, добавив, что, как и предыдущая версия, Kandinsky 2.2 находится в открытом доступе, и протестировать её можно совершенно бесплатно.

Сообщается, что ознакомиться с возможностями Kandinsky 2.2 можно на промостранице модели, на платформе FusionBrain.AI, в Telegram-боте и боте соцсети «ВКонтакте», а также при помощи команды «Запусти художника» на умных устройствах Sber, в мобильном приложении Салют. Модель доступна на платформе ML Space в хабе предобученных моделей и датасетов DataHub.

Разработкой и обучением нейросети занимались исследователи Sber AI при партнёрской поддержке учёных из Института искусственного интеллекта AIRI на объединённом датасете Sber AI и компании SberDevices.

Anthropic запустила Claude 2 — дружелюбного ИИ-бота с безобидными ответами и своей конституцией

Anthropic выпустила в свободный доступ вторую версию своего чат-бота Claude. Компания советует воспринимать «Claude 2 как дружелюбного, увлечённого коллегу или личного помощника, которого можно проинструктировать на естественном языке». Контекстное окно Claude 2 вмещает почти 75 000 слов, что радикально больше 3000 слов у общедоступной версии ChatGPT. К тому же, по словам Anthropic, её чат-бот обладает чувством юмора. ИИ-бот уже доступен для жителей США или Великобритании на сайте Anthropic, а через VPN можно получить к нему доступ и из других стран.

 Источник изображения: Anthropic

Источник изображения: Anthropic

Бот Claude 2, которого Anthropic описывает как «полезного, безобидного и честного», может приводить краткие содержания текстов, писать код, переводить тексты и выполнять массу других семантических задач. По описанию его функциональность схожа с Google Bard или Microsoft Bing, но Anthropic утверждает, что он построен иначе. Его стиль общения более разговорный и человечный, чем у его «собратьев», кроме того он, предположительно, наделён чувством юмора. Claude 2 руководствуется набором принципов, называемых его создателями «конституцией», которые он использует для проверки своих ответов, не привлекая модераторов-людей.

Claude 2 значительно расширил свои возможности по сравнению с предшественником. В дополнение к способности создавать более длинные ответы, чат-бот теперь немного лучше разбирается в математике, кодировании и рассуждениях по сравнению с предыдущей моделью. Так, Claude 2 набрал 76,5 % при сдаче экзамена на адвоката, в то время как предшественник получил только 73 %. Согласно Anthropic, Claude 2 намного лучше «даёт безобидные ответы», не содержащие вредоносного контента, хотя Anthropic не исключает возможности, что чат-бот может быть спровоцирован.

 Источник изображения: Pixabay

Источник изображения: Pixabay

В отличие от Bard и Bing, Claude 2 не подключён к интернету и обучается на данных до декабря 2022 года. Хотя он не может отображать самую последнюю информацию о текущих событиях, его набор данных все же более свежий, чем тот, который использует бесплатная версия ChatGPT, ограниченная концом 2021 года.

Anthropic расширила контекстное окно Claude 2 примерно до 75 000 слов. Пользователь сможет загрузить в чат-бота десятки страниц или даже целый роман для анализа. Благодаря такому размеру контекстного окна, Claude 2 может создать краткое изложение сложной и очень длинной исследовательской работы. Его «собратья» накладывают гораздо более строгие ограничения: максимум ChatGPT составляет около 3000 слов, а контекстное окно Bing было недавно увеличено до 4000 слов.

Anthropic, поддерживаемая Google, первоначально запустила первую версию Claude в марте. Тогда этот чат-бот был доступен для предприятий только по запросу или в виде приложения в Slack. Теперь, когда Claude 2 стал общедоступным, множество пользователей постараются выяснить, достаточно ли более длинного контекстного окна, чтобы сбить этого «безобидного» бота с толку, как это уже было с другими чат-ботами.

window-new
Soft
Hard
Тренды 🔥
Поставки Tesla рухнули на 13 % под давлением конкурентов, но аналитики ожидали худшего 17 мин.
SpaceX провела 500-й запуск Falcon 9 — и снова побила рекорд многоразовости 24 мин.
DigitalBridge завершила сделку по покупке Yondr Group 28 мин.
Тесты более 200 карт памяти SD выявили пропасть между заявленными и реальными характеристиками 30 мин.
Honor представила Magic V5 — самый тонкий в мире складной смартфон 2 ч.
Tesla рассказала, как деградируют аккумуляторы в электромобилях — влияет не только пробег 3 ч.
«Не нравится наблюдать, как медленно уничтожается всё, что я помогала создавать»: ветеран Xbox раскритиковала консольную стратегию Microsoft 3 ч.
Телескоп «Джеймс Уэбб» ударился в археологию и разглядел прошлое Млечного Пути в сотне древних галактик 4 ч.
G.Skill продемонстрировала в деле модуль памяти CAMM2 DDR5-10000 4 ч.
Acer выпустила внешний SSD Predator GP30 — до 8 Тбайт и 2000 Мбайт/с 5 ч.