реклама
Новости Hardware

Amazon вкладывает миллиарды в разработку ИИ-чипов, чтобы снизить зависимость от Nvidia

Подразделение AWS американского интернет-гиганта Amazon давно входит в число крупнейших игроков рынка облачных услуг. Оно сильно зависит от компонентов и программного обеспечения Nvidia, но параллельно развивает и собственную инфраструктуру, используя наработки компании Annapurna Labs, купленной в 2015 году за $350 млн.

 Источник изображения: Amazon

Источник изображения: Amazon

В следующем месяце, как сообщает Financial Times, компания должна продемонстрировать публике ускорители Trainium 2, которые способны справляться с обучением больших языковых моделей. Образцы этих ускорителей уже эксплуатируются стартапом Anthropic, в капитал которого Amazon вложила $4 млрд. Клиентами Amazon на этом направлении также являются компании Databricks, Deutsche Telekom, Ricoh и Stockmark.

Вице-президент AWS по вычислительным и сетевым сервисам Дейв Браун (Dave Brown) заявил следующее: «Мы хотим быть абсолютно лучшим местом для эксплуатации Nvidia, но в то же время мы считаем нормой возможность иметь альтернативу». Уже сейчас ускорители семейства Inferentia обходятся при генерировании ответов ИИ-моделей на 40 % дешевле решений Nvidia. Когда речь идёт о расходах в десятки миллионов долларов, подобная экономия может иметь решающее значение при выборе вычислительной платформы.

По итогам текущего года капитальные расходы Amazon могут достичь $75 млрд, а в следующем окажутся ещё выше. В прошлом году они ограничились $48,4 млрд, и величина прироста показывает, насколько важным компания считает финансирование своей инфраструктуры в условиях бурного развития рынка систем ИИ. Эксперты Futurum Group поясняют, что крупные провайдеры облачных услуг стремятся формировать собственную вертикально интегрированную и однородную по своему составу структуру используемых чипов. Большинство из них стремится разрабатывать собственные чипы для ускорителей вычислений, это позволяет снизить расходы, поднять прибыль, усилить контроль за доступностью чипов и развитием бизнеса в целом. «Дело не столько в чипе, сколько в системе в целом», — поясняет Рами Синно (Rami Sinno), директор Annapurna Labs по разработкам. По его словам, мало кто из компаний может повторить в больших масштабах то, что делает Amazon.

Чипы собственной разработки позволяют Amazon потреблять меньше электроэнергии и повышать КПД собственных центров обработки данных. Представители TechInsights сравнивают чипы Nvidia с автомобилями с кузовом типа «универсал», тогда как решения Amazon собственной разработки напоминают более компактные хэтчбеки, заточенные под выполнение узкого спектра задач. Amazon не спешит делиться данными о тестировании быстродействия своих ускорителей, но чипы Trainium 2 должны по уровню быстродействия превзойти своих предшественников в четыре раза, по имеющимся данным. Само по себе появление альтернатив решениям Nvidia уже может быть высоко оценено клиентами AWS.

Источник:

Если вы заметили ошибку — выделите ее мышью и нажмите CTRL+ENTER.
Материалы по теме
window-new
Soft
Hard
Тренды 🔥
Картинки в стиле Ghibli перегрузили серверы OpenAI — выпуск новых функций замедлен 7 ч.
У Ubisoft пока нет чёткого плана работы новой компании с Tencent — инвесторы и сотрудники нервничают 8 ч.
«Загрузки быстрее, чем в Doom (2016)»: эксперт Digital Foundry остался в восторге от Doom: The Dark Ages 9 ч.
Консоли задержат релиз постапокалиптического стелс-экшена Steel Seed от создателей Close to the Sun — объявлена новая дата выхода 11 ч.
ИИ-модель Llama запустили на ПК из прошлого тысячелетия на базе Windows 98 12 ч.
Telegram продал виртуальных первоапрельских кирпичей почти на 100 млн рублей 12 ч.
Nintendo подтвердила рекордную продолжительность презентации Switch 2 и устроит две демонстрации игр для консоли 12 ч.
ChatGPT остаётся самым популярным чат-ботом с ИИ, но у конкурентов аудитория тоже растёт 13 ч.
Google сделает сквозное шифрование в Gmail доступным для всех 13 ч.
Антиутопия на колёсах: новый геймплейный трейлер раскрыл дату выхода приключения Beholder: Conductor про кондуктора легендарного поезда 14 ч.