Mobo EpoX:
4PEA+ : i845PE
4G4A : i845G
4SDA+ : SiS 645
8K3A : VIA KT333
8KHA+ : VIA KT266A
- Материнская плата;
- CD диск с ПО и драйверами;
- Брекет с 2 внешними портами USB;
- Брекет с 2 внешними портами Firewire;
- Брекет с GAME портом;
- ATA-100 шлейф, FDD шлейф;
- Руководство пользователя на английском языке + краткое руководство;
- Описание MagicFlash & USDM;
- Планка на заднюю панель.
Комплектация полная - в коробке есть все необходимое для сборки системы; докупать ничего не нужно.
Теперь рассмотрим руководство пользователя.
Оно выполнено в том же стиле, что и оформление коробки. Это выглядит очень стильно. Что касается содержания, то к нему претензий не возникло. Есть полная информация по всем коннекторам и перемычкам, уделено внимание настройкам биоса и описанию процедуры установки драйверов.
Посмотрим на CD диск. Стоит ли говорить, что на нем тоже изображены части скелета :)
Содержимое компакт-диска более-менее стандартное: необходимые для работы драйвера от NVidia, утилиты и дополнительное программное обеспечение, которое включает Norton Ghost 7 и антивирус PCcillin 2002. Кроме этого, на диске записана фирменная утилита системного мониторинга USDM и программа обновления биоса через интернет - Magic Flash, с весьма оригинальным дизайном.
Плата
При внимательном рассмотрении платы 8RDA+ отмечаешь несколько новых деталей: радиатор на северном мосту оригинальной формы, необычное расположение слотов DIMM, странный цвет AGP слота.
Плата имеет достаточно большие размеры (30 на 24,5см), при этом дизайн PCB не подразумевает установку RAID контроллера.
При установке платы в корпус особых проблем не возникало. Отмечу только несколько неудобное расположение разъема питания, однако это уже привычная особенность плат производства Epox.
Сразу обращаем внимание на привычный зеленый цвет платы и необычное расположение процессорного сокета. На всех платах, начиная с EPOX EP-8KTA3, сокет был развернут на 90 градусов относительно оси продольной оси платы (плата EP-8K7A на AMD760 не в счет :). А вот на плате 8RDA+ он расположен более традиционно, причем очень близко к краю платы. В результате снимать/устанавливать кулеры в стандартном ATX корпусе будет затруднительно.
Вот, например, при установке радиатора Zalman 6000CU, последний упирается в блок питания.
Под зубьями сокета есть защитные полоски, а защелка у сокета металлическая. Свободного места вокруг сокета вполне достаточно для установки больших кулеров (кстати, в разделе "Разгон и стабильность" будет продемонстрирована необходимость использования большие кулеров).
Что касается поддержки встроенного термодатчика, то информация следующая.
- Пользователь не имеет возможности получить информацию о температуре ядра процессора (ни через биос, ни с помощью программ мониторинга).
- Плата имеет функцию "CPU Overheating Protection", благодаря которой система обесточивается при достижении температуры 110град.C. Причем эта функция работает только с процессорами, в которые встроен термосенсор.
Для прояснения ситуации я отправил с Epox письмо c 2 вопросами: можно ли получить температуры ядра и, если да, то как. Второй вопрос касался запуска системы без кулера. Ответ пришел в тот же день. Как утверждает официальный саппорт EPox'a, действительно, плата 8RDA+ имеет аппаратную защиту от перегрева, которая срабатывает при температуре 110град.С. Изменить этот предел, судя по всему, никак нельзя. Кроме того, получить информацию о температуре ядра процессора никак нельзя. Ни собственная утилита Epox, ни MotherboardMonitor, ни соответствующий раздел в биосе не поддерживают эту функцию.
Если с первым вопросом все было ясно, то что случится, если я запущу систему без кулера на процессоре, я так и не выяснил. Сотрудник поддержки всячески увиливал от прямого ответа, я же рисковать собственным процессором не захотел.
Что ж, подождем, когда цены на AMD Athlon XP упадут до отметки 10$, тогда и попробуем :)))
Совершенно очевидно, что опыт с платой Epox 8K3A (KT333) вынудил инженеров/программистов Epox исключить возможность отслеживания пользователем температуры ядра. Просто диву даешься сколько людей, увидев температуру 60град.С, впадали в панику и всеми силами пытались охладить процессор (который работает в совершенно нормальном режиме).
Я лично посетил большинство компьютерных контор своего города, и, сделав глупое лицо, спрашивал, - "у меня процессор Athlon XP разогревается до 65-70град.C, это много или мало??". Так вот, все наперебой говорили, что это однозначно перегрев и процессор скоро сгорит. Особо хитрые предлагали приобрести Thermaltake 6CU+, хотя я говорил, что у меня Zalman 6000Cu :))
Только в одной конторе мне задали умный встречный вопрос - "а какая у тебя материнская плата?". И объяснили всю разницу между показаниями встроенного термосенсора и внешнего датчика.
Итак, возвращаемся к нашей плате. Теперь посмотрим на то, как организовано пассивное охлаждение северного моста.
Перед нами совершенно новая оригинальная форма радиатора. За время тестирования я обратил внимание на то, что радиатор довольно сильно нагревался (что говорит о хорошем контакте радиатора и чипсета). Поэтому при работе на высоких частотах (FSB>=166Мгерц) желательно, чтобы в системном блоке была хорошая вентиляция.
Кстати, южный мост платы тоже активно греется и ему бы не помешал хотя бы радиатор.
А вот если пользователь захочет установить активное охлаждение северного моста, то сделать это будет непросто - по близости нет разъемов для подключения вентиляторов. Всего же на плате 8RDA+ три таких разъема. Пара разъемов (FAN1,FAN2) установлена около процессорного сокета и еще один (FAN3) - около последнего слота PCI.
Память
А теперь переходим к очень интересному месту - к конфигурации памяти. Как я говорил в описании чипсета - nForce II является двухканальным. Впрочем ему ничего не мешает работать в одноканальном режиме (естественно производительность при этом падает).
На плате Epox 8RDA+ установлено 3 слота для модулей DIMM, причем нумерованы они весьма необычно.
Отдельно стоящий слот (ближний к краю) - это слот №1 и соответствует нулевому банку памяти. А вот слоты №2 и №3 (в таком порядке он расположены от сокета) соответствуют первому банку памяти.
Итак, если мы установим только одну планку памяти в любой из слотов, система будет работать в одноканальном режиме. В этом же режиме она будет работать, если установить память в слоты №2 и №3.
А вот чтобы задействовать двухканальный режим, нужно минимум два модуля и один из модулей обязательно установить в слот №1. Все просто - нужно только ознакомится с инструкцией :)
Для оверклокеров это не очень хорошие новости. Как показал весь предыдущий опыт по разгону процессоров, система гораздо легче разгоняется, когда установлен один модуль памяти вместо двух. Поэтому, для многих компьютерных энтузиастов при переходе на nForce II, необходимо зарезервировать деньги на покупку второго модуля памяти. Причем желательно, чтобы память была одинаковая (то есть одного стандарта и одного производителя и из одной партии).
Впрочем, последнюю рекомендацию можно не соблюдать - я без ущерба стабильности использовал вместе модули DDR333 и DDR400 (производства Samsung), но только на штатных частотах. А если планируется разгон памяти, то модули должны быть качественные, с гарантией стабильной работы на частотах более 200Мгерц.
К большому сожалению отсутствует светодиод для индикации питания на памяти.
AGP
Теперь посмотрим на AGP слот.
Слот весьма оригинального цвета (наверно бордовый :), имеет защелку и поддерживает установку только 1.5вольтовых видеокарт стандарта AGP 4x8x. Есть ли защита от установки нестандартных видеокарт и будут ли в этом случае негативные последствия - на 100% утверждать не могу.
Отсутствует проблема с блокировкой защелок слотов DIMM. И хотя на плате установлено 6 PCI слотов, благодаря большой ширине платы (24.5 см), трудности с установкой памяти могут возникнуть только при установленной очень длинной видеокарты.
Кстати, кроме 6 PCI слотов, других слотов нет.
Из других возможностей расширения можно выделить поддержку последовательных шин:
- USB 2.0 - шесть портов, четыре из которых установлены на задней панели платы, а еще два подключаются через брекет (есть в комплекте);
- IEEE-1394 ("Firewire") - два порта, подключаются с помощью брекета (тоже есть в комплекте с платой);
Специально отмечу, что поддержка обоих стандартов реализована в южном мосте (или в MCP). А для физической разводки (несколько некорректно, английский термин physical hardware layer) используется микросхема Realtek RTL8801B для FireWire.
Похожая схема реализована для встроенной сети и звука. Обе эти функции реализованы в южном мосте, а для физического интерфейса используются микросхемы: Realtek RTL8201BL (сеть) и Realtek ALC650E (6-канальный звук).
Теперь пара слов о дисковой подсистеме. IDE разъемы встроенного контроллера расположены в левой половине платы. Между ними есть значительные промежутки, что облегчает подключение шлейфов. А вот окрашены они в одинаковый синий цвет, что несколько озадачивает, но рядом есть крупные надписи, так что понять кто из них IDE1, а кто IDE2 - можно.
Нетрудно заметить, что дизайн PCB не предусматривает установку RAID контроллера. Кроме того отсутствует поддержка устройств с шиной SerialATA. Пожалуй это две самые главные претензии, которые можно предъявить плате Epox 8RDA+. Впрочем всегда можно использовать внешний RAID контроллер (благо PCI слотов - шесть штук :).
Разъем для подключения дисковода расположен рядом (на фото он черный).
А между FDD и IDE разъемами установлен семисегментный индикатор, который предназначен для отображения POST кодов при загрузке системы.
При запуске системы биос начинает последовательно инициализировать устройства и в случае ошибки либо останавливает загрузку, либо пытается повторить инициализацию. И в том и в другом случае на индикаторе высвечивается код последнего проинициализированного устройства. В результате чего, пользуясь таблицей кодов из руководства пользователя, мы легко определяем в каком месте произошел сбой. Количество кодов и их описаний занимает 4 листа, поэтому приводить их я не буду. Замечу только, что большое количество кодов означает то, что, в случае какой-либо проблемы уже на этапе первого запуска, мы достаточно точно можем эту проблему локализовать. Что неудобно - значение индикатора видно только при открытом корпусе. Теперь, что удобно - служба техподдержки теперь может во многих случаях консультировать пользователей по телефону. Пользователю достаточно назвать код и он получает совет по решению проблемы. Конечно, в тяжелых случаях это не поможет, но при простых неполадках польза без сомнения будет.
На практике, при экспериментах с разгоном возникала ситуация, когда система не стартовала, а код ошибки не высвечивался на индикаторе. Судя по всему это недоработки биоса.
Задняя панель платы нестандартная, но в комплекте с платой есть заглушка на заднюю стенку корпуса.
По традиции привожу схематичное изображение материнской платы.
На плате установлено всего две перемычки: первая - для очистки содержимого CMOS (JCMOS - около батарейки), другая предназначена для установки стартовой частоты FSB = 100/133Мгерц или 133/166Мгерц (JCLK - около разъема питания).
BIOS
Переходим к описанию биоса. Биос платы Epox 8RDA+ выполнен на основе Award BIOS v6.00PG.
Общее впечатление - сильно переработанный AWARD с множеством изменений. Начну с того, что все настройки, касающиеся выбора частоты работы процессора и памяти, тайминги работы последней, находятся в разделе "BIOS Advanced Chipset Features".
Изменение частоты FSB мы будет подробно рассматривать в разделе "Разгон и стабильность", а сейчас посмотрим на установку таймингов памяти.
CAS Latency изменяется в привычном диапазоне. Доступные значения: 3, 2.5 и 2. Если кто забыл - чем меньше CAS Latency (или CL), тем выше производительность.
Есть и более тонкие настройки: Active(Trp), Active to precharge(Tras) и Active to CMD(Trcd).
Причем они могут принимать довольно неожиданные значения. Вот, например, Tras - может изменятся от 1 до 15!
Или параметр Trp, значения которого находятся в диапазоне от 1 до 7.
И наконец параметр Trcd - тоже может принимать значения от 1 до 7.
А вот параметра DRAM Command Rate вы не найдете - это уникальная особенность чипсетов VIA KT(266333400).
Еще более интересный параметр - это установка частоты работы памяти.
Как вы видите, память можно установить на частоту от 50 до 200 процентов от текущей частоты FSB. Для удобства восприятия я сделал следующую табличку:
Зеленым цветом я выделил те режимы, которые являются либо стандартными, либо такими, в которых память может стабильно работать.
Желтым цветом выделены те режимы, в которых могут работать только модули памяти, выпущенные специально для оверклокеров. Ну, а красным цветом выделены чисто теоретические частоты памяти.
Максимум, на что способны сегодняшние модули памяти, это работать на частоте 233 МГерц (DDR466). В частности такие модули предлагают компании Geil и OCZ. Причем, я не сомневаюсь, что планка 250Мгерц (DDR500) будет взята в самое ближайшее время.
Однако стоит помнить, что для AMD систем проблема пропускной способности памяти стоит не так остро, как для других систем. Для процессора, работающего на системной шине 200Мгерц (bandwidth = 3.2 Гбайт/с), будет вполне достаточно пропускной способности DDR333 памяти, работающей в двухканальном режиме (5.4Гбайт/с).
Теперь посмотрим на раздел системного мониторинга.
Набор датчиков хороший: отслеживаются скорости вращения всех трех вентиляторов, температуры системы и процессора, текущие значения напряжений. Единственная претензия заключается в отсутствии информации о температуре ядра, что может помешать серьезному разгону.
Кроме этого можно задать значение критической температуры процессора, при достижении которой система выключится.
Так же не понравилось отсутствие функции Epox MagicHealth, которая предназначена для вывода информации о мониторинге на POST экран.
Разгон и стабильность
Начну со стабильности - за время тестирования (около двух недель) каких-либо сбоев в работе не было. Причем, последние несколько дней система работала круглосуточно. Впрочем, ничего особенного в этом нет - это обычная практика при тестировании материнской платы. И за исключением бракованных экземпляров, платы других производителей работают исключительно стабильно (даже Elitegroup & Chaintech :).
Итак, модуль питания платы 8RDA+ выполнен по 3х канальной схеме и имеет шесть конденсаторов емкостью 3300uF каждый и 4 по 2200uF.
Теперь о разгоне - по этому параметру плата показала очень хорошие результаты.
Тестовый процессор Athlon XP 1700+ на ядре Thoroughbred заработал на частоте 1850Мгерц при напряжении Vcore=1.85V.
А вот разгон с понижением множителя выявил одну весьма неприятную проблему. Система работала нестабильно при частоте FSB = 200Мгерц и выше. Причем, посещение различных конференций подтвердило то, что на высоких частотах (>200Мгерц) оверклокеры сталкиваются с невозможностью старта системы или нестабильной работой Windows. Причем, я ставил память как синхронно (DDR400), с максимальными таймингами работы, так и асинхронно (в частности режим DDR333 = 83% FSB).
Еще одна проблема заключается в том, что плата Epox 8RDA+ не всегда стартовала с измененным множителем процессора Athlon Thoroughbred 1700+. Приходилось выполнять "холодный запуск" с нажатой клавишой "Ins", устанавливать штатный множитель, перегружаться. И только потом заново устанавливать нужный множитель.
Но, так или иначе, у меня создалось впечатление, что все эти проблемы связаны с биосом, поскольку прошивка различных версий биосов либо исправляло некоторые проблемы, либо меняло их характер.
Давайте посмотрим, какие инструменты получает в руки любитель разгона.
Во-первых, изменение множителя. Этот параметр изменяется в диапазоне от 3 до 24 с шагом 1-0.5.
Во-вторых, мы имеем возможность устанавливать частоту FSB в пределах от 100 до 250Мгерц с шагом 1Мгерц.
К сожалению, в данной версии биоса очень неудачно организован выбор частоты системной шины. Если на платах 8K3A 8K9A мы могли ввести трехзначное число, то на плате 8RDA+ нам нужно прокрутить все промежуточные значения до необходимого. Кстати, подобный недостаток характерен для биосов плат производства Asus и некоторых других компаний.
А теперь самое интересное - проблему потери данных на винчестере из-за повышенной частоты на PCI можно забыть, как страшный сон. При любой частоте FSB, частота шины PCI остается равной 33Мгерц. Причем, какой-либо заслуги инженеров Epox тут нет. Данная функция заложена в чипсет и, судя по всему, все материнские платы на nForce II будут обладать этой возможностью.
Кстати, подобная функция была и у предыдущего чипсета - nVidia nForce.
А так как сейчас приобрести процессор Athlon XP с разблокированным множителем не проблема, для оверклокеров вырисовывается весьма радужная картина.
Далее - для серьезного разгона необходимо повышение напряжения на процессоре и памяти. Такие функции сгруппированы в разделе "Power BIOS Features".
По-порядку - напряжение на процессоре изменяется в диапазоне от 1.4V до 2.2V.
Следующий по важности пункт - увеличение напряжения на памяти.
У пользователя есть возможность повысить Vmem на 5, 10 и 15 процентов. Т.е., максимально возможное значение Vmem=2.9V.
И наконец у нас есть возможность повысить напряжение на шине AGP. Диапазон изменения от 1.5V(Default) до 1.8V с шагом 0.1V.
А вот напряжение на чипсете мы повысить не можем.
Итак, выводы.
Без сомнения, благодаря отличным характеристикам чипсета nForce II, платы на его основе становятся более привлекательным выбором для энтузиастов, нежели платы на чипсетах VIA. Прежде всего отметим асинхронность шин PCI и AGP, а также большое количество вариантов соотношения частот процессорной шины и шины памяти.
А что касается платы Epox 8RDA+, то ее пока трудно назвать "выбором оверклокера." Основные нарекания касаются стабильности работы на частоте 200 Мгерц и выше. Поэтому начинающим пользователям или оверклокерам с небольшим стажем :) я посоветую повременить с покупкой Epox 8RDA+ или обратить внимание на платы других производителей. Кстати, о других платах - в ближайшее время мы намерены протестировать платы на nForce2 производства Asus и Abit - платы уже в пути.
Производительность
Сравнение производительности я естественно провел с одной из самых быстрых плат на чипсете KT400 - Asus A7V8X.
В тестовой системе было использовано следующее оборудование:
Тестовое оборудование |
Процессор |
AMD Athlon XP Thoroughbred |
Видеокарта |
Ti4200(315600) на чипе NVidia GeForce4 64Mb nVidia Detonator v40.41 |
Звуковая карта |
Creative Live 5.1 |
HDD |
IBM DTLA 307030 30Gb |
Память |
256 Мбайт PC3200 DDR SDRAM производства Samsung |
Корпус |
Inwin506 с блоком питания PowerMan 250W |
OS |
Windows 2000 English |
Итак, измерение производительности происходило в самом жестком для платы режиме: Частота FSB = 166Мгерц(множитель = 10.5); частота памяти = 166Мгерц, при этом были установлены следующие тайминги работы:
- CAS Latency = 2Т
- Trp = 2T
- Tras = 6T
- Trcd = 2T
Для платы на чипсете VIA, кроме этого, были установлены следующие параметры: Bank Interleave = 4 Bank, DRAM Command Rate = 1T.
Синтетические тесты:
Показывают теоретическую производительность.
Результаты тестов офисных приложений:
Игровые приложения:
Итак, плата на чипсете nForce II заметно превосходит конкурента на чипсете VIA. Стоит обратить внимание на следующие моменты: Во-первых, превосходство чипсета nForce II в синтетических тестах довольно велико и может быть объяснено преимуществом двухканального доступа к памяти. Во-вторых, при переходе к тестам реальных приложений превосходство сохраняется. Причем если прирост производительности в Quake3 напрямую зависит от возросшей пропускной способности, то прирост в Serious Sam это результат усовершенствованного блока DASP. Самое интересное, что в этой игре процессоры AMD традиционно выглядят наголову сильнее своих конкурентов. Для примера, процессор Athlon XP работающий на частоте 1750Мгерц (FSB=166, плата на чипсете nForce II) показывает лучшую производительность чем Pentium 4 работающий на частоте 2700Мгерц (FSB = 150, плата на чипсете Granite Bay или i845PE).
И наконец, стоит обратить внимание на то, что производительность nForce II в одноканальном режиме совсем немного уступает двухканальному режиму. Это означает то, что апгрейд на nForce II оправдан даже при наличии только одного модуля памяти.
Выводы
Платы на чипсете nVidia nForce II по всем параметрам превосходят все остальные платы. Большая производительность, лучшие средства разгона и твикинга памяти.
Что касается платы Epox 8RDA+, то она понравилась своей стабильностью, набором функций и производительностью. Правда, нельзя забывать о невозможности получения информации о температуре процессорного ядра и непонятной ситуация с наличием аппаратной защиты от перегрева. Кроме того, некоторым пользователям может не понравится отсутствие варианта платы со встроенным RAID контроллером и отсутствие поддержки SerialATA.
Еще один недостаток касается серьезных недоработок в коде биоса, в результате чего пользователь сталкивается с трудностями при разгоне и при установке нештатных параметров работы памяти.
Однако все эти недостатки с лихвой компенсируются серьезным ростом производительности. На шине 166Мгерц плата Epox 8RDA+ показала настолько высокие результаты, что стала моей базовой системой и с позором изгнала оттуда плату на чипсете VIA KT400 :))
Заключение
Плюсы:
- Хорошие возможности расширения;
- Высокая стабильность и производительность;
- Хорошие возможности для разгона (Vcore до 2.2V, изменение Vmem, Vagp);
- Независимые шины PCI и AGP;
- Очень широкие возможности по настройки работы памяти;
- Есть поддержка Firewire и USB2.0;
- Встроенный 6 канальный звуковой контроллер(nForce II APU) и сеть.
Минусы:
- Неполная поддержка термодатчика Athlon XP;
- Нет варианта с RAID контроллером и поддержкой SerialATA;
- Недоработки биоса в области разгона.
Дополнительные материалы:
Epox 4PEA+ : i845PE
EpoX 4G4A : i845G
EPoX 4SDA+ : SiS 645
EPoX 8K3A : VIA KT333
EPoX 8KHA+ : VIA KT266A
Thoroughbred Athlon XP. Стресс-тест
VIA KT333 Roundup. Сравнительное тестирование
Motherboard Monitor
Если Вы заметили ошибку — выделите ее мышью и нажмите CTRL+ENTER.
|