реклама
Новости Hardware

Надвигается новый дефицит видеокарт? Аппетиты ИИ-систем в отношении GPU растут как на дрожжах

Недавнее появление ChatGPT вызвало много шума в отраслях, связанных с облачными вычислениями и искусственным интеллектом. Технологические гиганты, такие как Microsoft, Google и Baidu, создали продукты и услуги, основанные на технологиях генеративного ИИ. Эта новая волна интереса принесёт пользу участникам цепочки поставок графических процессоров и чипов ИИ — таким компаниям, как NVIDIA, TSMC, Unimicron, AIChip.

 Источник изображения: Freepik

Источник изображения: Freepik

Данные, вычислительная мощность и алгоритмы — три фактора, определяющих развитие генеративного ИИ. Хотя продукты и услуги на основе ИИ относительно легко создавать, оптимизировать их гораздо сложнее. В этом отношении крупные облачные компании находятся в более выгодном положении, так как обладают огромным количеством необходимых ресурсов. С точки зрения разработчиков этих продуктов, существующие чат-боты, такие как ChatGPT, способны не только общаться с пользователями на естественном языке, но и в некоторой степени удовлетворять потребность в «понимании» пользовательского ввода.

Использование поиска в интернете стало повседневной привычкой большинства людей, и самой неотложной задачей крупных облачных компаний является дальнейшая оптимизация поисковых систем. Google остаётся абсолютным лидером на мировом рынке поисковых систем с долей рынка более 90 %. Microsoft Bing имеет рыночную долю всего в 3 % и вряд ли будет представлять серьёзную угрозу в краткосрочной перспективе. Однако благодаря чат-боту у Bing появляется все больше пользователей, которые могут внести свой вклад в виде обратной связи для дальнейшего совершенствования и обучения ИИ.

Для обучения ИИ требуется обработать огромное количество данных, и использование большого количества высокопроизводительных графических процессоров помогает сократить время обучения. В случае ChatGPT, количество используемых параметров обучения выросло со 120 миллионов в 2018 году до 180 миллиардов в 2020 году и потребовало 20 000 графических процессоров для обработки данных. Для дальнейшего коммерческого использования ChatGPT количество графических процессоров понадобится увеличить минимум до 30 000 штук. В этих расчётах для оценки использовались чипы уровня NVIDIA A100.

NVIDIA, вероятно, выиграет от развития генеративного ИИ сильнее всех. A100 — универсальная система для рабочих нагрузок, связанных с ИИ. Чип обеспечивает производительность 5 петафлопс и на сегодняшний день является лучшим выбором для анализа больших данных и ускорения ИИ. AMD, в свою очередь, выпустила серверные чипы серий MI00, MI200 и MI300, которые тоже широко используются для приложений на базе ИИ. TSMC продолжит играть ключевую роль в связанной цепочке поставок, наряду с Nan Ya PCB, Kinsus и Unimicron, которые тоже смогут воспользоваться растущей волной спроса. Разработчики ИИ-чипов из Тайваня, такие, как GUC, AIchip, Faraday Technology и eMemory также выиграют от бума генеративного ИИ.

Помимо непосредственной разработки продуктов, отрасли, использующие ИИ, столкнутся с нормативными проблемами из-за обоснованных опасений общественности по поводу персональных данных и поддельного контента. Смогут ли компании, предлагающие продукты и услуги на основе ИИ, защитить конфиденциальность данных пользователей и гарантировать, что определённые типы контента, такие как новости, являются «точными» или «аутентичными»? Существует также вопрос соблюдения местных законов и правил. Что касается обучающих ресурсов, то эффективная оптимизация моделей ИИ зависит от качества сортировки, фильтрации и интеграции различных типов данных, которые затем передаются разработчикам моделей ИИ для обучения.

Источник:

Если вы заметили ошибку — выделите ее мышью и нажмите CTRL+ENTER.
Вечерний 3DNews
Каждый будний вечер мы рассылаем сводку новостей без белиберды и рекламы. Две минуты на чтение — и вы в курсе главных событий.
Материалы по теме
window-new
Soft
Hard
Тренды 🔥
Ubisoft рассказала о возможностях и инновациях стелс-механик в Assassin's Creed Shadows — новый геймплей 24 мин.
Создатели Black Myth: Wukong удивят игроков до конца года — тизер от главы Game Science 2 ч.
Акции Nvidia больше не самые доходные — MicroStrategy взлетела на 500 % за год благодаря биткоину 3 ч.
Заждались: продажи S.T.A.L.K.E.R. 2: Heart of Chornobyl за два дня после релиза превысили миллион копий 4 ч.
YouTube добавил в Shorts функцию Dream Screen — ИИ-генератор фонов для роликов 6 ч.
ПК с ИИ снижают производительность труда пользователей — люди не умеют правильно общаться с ИИ 6 ч.
Разработчики Path of Exile 2 раскрыли, чего ждать от раннего доступа — геймплей, подробности и предзаказ в российском Steam 7 ч.
Приключение Hela про храброго мышонка в открытом мире получит кооператив на четверых — геймплейный трейлер новой игры от экс-разработчиков Unravel 9 ч.
OpenAI случайно удалила потенциальные улики по иску об авторских правах 10 ч.
Скрытые возможности Microsoft Bing Wallpaper напугали пользователей 10 ч.
Стартовала сборка второй ракеты NASA SLS — через год она отправит людей в полёт вокруг Луны 35 мин.
TSMC начнёт выпускать 1,6-нм чипы через два года 4 ч.
Представлен 80-долларовый смартфон Tecno Pop 9 — с Helio G50 и батареей на 5000 мА·ч 4 ч.
Россия и США активно обсуждают, как будут топить МКС 5 ч.
Magssory Fold 3 в 1 — компактная и функциональная беспроводная зарядная станция для Apple, Samsung и не только 7 ч.
Nokia подписала пятилетнее соглашение о поддержке ЦОД Microsoft Azure с миграцией с 100GbE на 400GbE 7 ч.
Давно упавший на Землю кусочек Марса пролил свет на историю воды на Красной планете 8 ч.
TeamGroup представила SSD T-Force GA Pro на чипе InnoGrit — PCIe 5.0, до 2 Тбайт и до 10 000 Мбайт/с 8 ч.
Провалился крупнейший проект по производству электромобильных батарей в Европе — Northvolt объявила о банкротстве 8 ч.
В Зеленограде начнут выпускать чипы для SIM-карт и паспортов — на этом планируется заработать триллионы рублей 8 ч.